Suppr超能文献

揭示基因网络推断方法的优缺点。

Revealing strengths and weaknesses of methods for gene network inference.

机构信息

Laboratory of Intelligent Systems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. doi: 10.1073/pnas.0913357107. Epub 2010 Mar 22.

Abstract

Numerous methods have been developed for inferring gene regulatory networks from expression data, however, both their absolute and comparative performance remain poorly understood. In this paper, we introduce a framework for critical performance assessment of methods for gene network inference. We present an in silico benchmark suite that we provided as a blinded, community-wide challenge within the context of the DREAM (Dialogue on Reverse Engineering Assessment and Methods) project. We assess the performance of 29 gene-network-inference methods, which have been applied independently by participating teams. Performance profiling reveals that current inference methods are affected, to various degrees, by different types of systematic prediction errors. In particular, all but the best-performing method failed to accurately infer multiple regulatory inputs (combinatorial regulation) of genes. The results of this community-wide experiment show that reliable network inference from gene expression data remains an unsolved problem, and they indicate potential ways of network reconstruction improvements.

摘要

已经开发出许多方法来从表达数据中推断基因调控网络,然而,它们的绝对和相对性能仍然了解甚少。在本文中,我们引入了一个用于基因网络推断方法的关键性能评估框架。我们提出了一个基于模拟的基准套件,该套件作为 DREAM(Reverse Engineering Assessment and Methods 对话)项目范围内的一项盲目的、面向社区的挑战提供。我们评估了 29 种基因网络推断方法的性能,这些方法由参与团队独立应用。性能分析表明,当前的推断方法在不同程度上受到不同类型的系统预测误差的影响。特别是,除了表现最好的方法之外,其他方法都无法准确推断基因的多个调节输入(组合调节)。该社区范围的实验结果表明,从基因表达数据中进行可靠的网络推断仍然是一个未解决的问题,并且它们指出了网络重建改进的潜在途径。

相似文献

1
Revealing strengths and weaknesses of methods for gene network inference.揭示基因网络推断方法的优缺点。
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. doi: 10.1073/pnas.0913357107. Epub 2010 Mar 22.
7
Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks.评估基因调控网络因果推理方法的有效性。
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):56-70. doi: 10.1109/TCBB.2018.2853728. Epub 2018 Jul 6.
9
Fused Regression for Multi-source Gene Regulatory Network Inference.用于多源基因调控网络推断的融合回归
PLoS Comput Biol. 2016 Dec 6;12(12):e1005157. doi: 10.1371/journal.pcbi.1005157. eCollection 2016 Dec.

引用本文的文献

1
Gene regulatory network structure informs the distribution of perturbation effects.基因调控网络结构决定了扰动效应的分布。
PLoS Comput Biol. 2025 Sep 2;21(9):e1013387. doi: 10.1371/journal.pcbi.1013387. eCollection 2025 Sep.
9
Optimal linear ensemble of binary classifiers.二元分类器的最优线性集成
Bioinform Adv. 2024 Jun 25;4(1):vbae093. doi: 10.1093/bioadv/vbae093. eCollection 2024.

本文引用的文献

2
The first 30 years of p53: growing ever more complex.p53的头30年:愈发复杂
Nat Rev Cancer. 2009 Oct;9(10):749-58. doi: 10.1038/nrc2723.
5
Lessons from the DREAM2 Challenges.来自DREAM2挑战赛的经验教训。
Ann N Y Acad Sci. 2009 Mar;1158:159-95. doi: 10.1111/j.1749-6632.2009.04497.x.
10
How to infer gene networks from expression profiles.如何从表达谱推断基因网络。
Mol Syst Biol. 2007;3:78. doi: 10.1038/msb4100120. Epub 2007 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验