Laboratory of Intelligent Systems, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. doi: 10.1073/pnas.0913357107. Epub 2010 Mar 22.
Numerous methods have been developed for inferring gene regulatory networks from expression data, however, both their absolute and comparative performance remain poorly understood. In this paper, we introduce a framework for critical performance assessment of methods for gene network inference. We present an in silico benchmark suite that we provided as a blinded, community-wide challenge within the context of the DREAM (Dialogue on Reverse Engineering Assessment and Methods) project. We assess the performance of 29 gene-network-inference methods, which have been applied independently by participating teams. Performance profiling reveals that current inference methods are affected, to various degrees, by different types of systematic prediction errors. In particular, all but the best-performing method failed to accurately infer multiple regulatory inputs (combinatorial regulation) of genes. The results of this community-wide experiment show that reliable network inference from gene expression data remains an unsolved problem, and they indicate potential ways of network reconstruction improvements.
已经开发出许多方法来从表达数据中推断基因调控网络,然而,它们的绝对和相对性能仍然了解甚少。在本文中,我们引入了一个用于基因网络推断方法的关键性能评估框架。我们提出了一个基于模拟的基准套件,该套件作为 DREAM(Reverse Engineering Assessment and Methods 对话)项目范围内的一项盲目的、面向社区的挑战提供。我们评估了 29 种基因网络推断方法的性能,这些方法由参与团队独立应用。性能分析表明,当前的推断方法在不同程度上受到不同类型的系统预测误差的影响。特别是,除了表现最好的方法之外,其他方法都无法准确推断基因的多个调节输入(组合调节)。该社区范围的实验结果表明,从基因表达数据中进行可靠的网络推断仍然是一个未解决的问题,并且它们指出了网络重建改进的潜在途径。