Suppr超能文献

用于大规模应用的M13噬菌体生产。

M13 bacteriophage production for large-scale applications.

作者信息

Warner Christopher M, Barker Natalie, Lee Seung-Wuk, Perkins Edward J

机构信息

Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA,

出版信息

Bioprocess Biosyst Eng. 2014 Oct;37(10):2067-72. doi: 10.1007/s00449-014-1184-7. Epub 2014 Apr 13.

Abstract

Bacteriophage materials have the potential to revolutionize medicine, energy production and storage, agriculture, solar cells, optics and many other fields. To fulfill these needs, this study examined critical process parameters during phage propagation to increase phage production capability. A representative scale-down system was created in tube spin reactors to allow parallel experimentation with single- and multi-variable analysis. Temperature, harvest time, media composition, feed regime, bacteriophage, and bacteria concentration were analyzed in the scale-down system. Temperature, media composition, and feeding regimens were found to affect phage production more than other factors. Temperature affected bacterial growth and phage production inversely. Multi-variate analysis identified an optimal parameter space which provided a significant improvement over the base line method. This method should be useful in scaled production of bacteriophage for biotechnology.

摘要

噬菌体材料有潜力彻底改变医学、能源生产与存储、农业、太阳能电池、光学以及许多其他领域。为满足这些需求,本研究考察了噬菌体繁殖过程中的关键工艺参数,以提高噬菌体的生产能力。在管式旋转反应器中创建了一个代表性的缩小规模系统,以便进行单变量和多变量分析的平行实验。在缩小规模系统中分析了温度、收获时间、培养基成分、进料方式、噬菌体和细菌浓度。结果发现,温度、培养基成分和进料方式对噬菌体生产的影响比其他因素更大。温度对细菌生长和噬菌体生产呈反比影响。多变量分析确定了一个最佳参数空间,与基线方法相比有显著改进。该方法对于生物技术中噬菌体的规模化生产应是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验