Suppr超能文献

使用分层变化点模型对绝经临近时的月经周期长度和变异性进行建模。

Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models.

作者信息

Huang Xiaobi, Elliott Michael R, Harlow Siobán D

机构信息

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109.

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 ; Survey Methodology Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48106.

出版信息

J R Stat Soc Ser C Appl Stat. 2014 Apr 1;63(3):445-466. doi: 10.1111/rssc.12044.

Abstract

As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes.

摘要

随着女性接近更年期,她们月经周期长度的模式会发生变化。为了研究这些变化,我们需要对周期长度的均值和变异性进行联合建模。我们提出的模型为每位女性纳入了单独的均值和方差变化点,以及一个将它们联系在一起的层次模型,同时还包括回归成分,以纳入初潮年龄和产次等绝经起始预测因素。由于激素使用、手术以及未报告等原因,日历数据存在大量缺失,这又带来了额外的复杂性。我们在贝叶斯估计框架中整合多重填补和事件发生时间建模,以处理不同形式的缺失情况。应用后验预测模型检验来评估模型拟合情况。我们的方法成功地对女性整个晚育期的月经周期轨迹模式进行了建模,并确定了各段长度均值和变异性的变化点,为绝经过程提供了见解。更广泛地说,我们的模型为增加使用联合均值 - 方差模型来预测健康结果和更好地理解疾病过程指明了方向。

相似文献

6
Variations in the reporting of menstrual histories.月经史报告中的差异。
Am J Epidemiol. 1979 Feb;109(2):181-5. doi: 10.1093/oxfordjournals.aje.a112673.
7
Menstrual Cycle Changes as Women Approach the Final Menses: What Matters?女性接近绝经期时的月经周期变化:哪些重要?
Obstet Gynecol Clin North Am. 2018 Dec;45(4):599-611. doi: 10.1016/j.ogc.2018.07.003. Epub 2018 Oct 25.
10
Menstrual patterns leading to the final menstrual period.导致最后一次月经的月经模式。
Menopause. 2002 Jan-Feb;9(1):32-40. doi: 10.1097/00042192-200201000-00006.

引用本文的文献

本文引用的文献

1
Smooth random change point models.光滑随机变点模型。
Stat Med. 2011 Mar 15;30(6):599-610. doi: 10.1002/sim.4127. Epub 2010 Dec 16.
2
Characteristics of the menstrual cycle after discontinuation of oral contraceptives.停用口服避孕药后月经周期的特点。
J Womens Health (Larchmt). 2011 Feb;20(2):169-77. doi: 10.1089/jwh.2010.2001. Epub 2011 Jan 10.
3
Sequential predictions of menstrual cycle lengths.月经周期长度的序列预测。
Biostatistics. 2010 Oct;11(4):741-55. doi: 10.1093/biostatistics/kxq020. Epub 2010 Apr 16.
9
Cervical mucus symptom and daily fecundability: first results from a new database.
Stat Methods Med Res. 2006 Apr;15(2):161-80. doi: 10.1191/0962280206sm437oa.
10
Hormone predictors of bone mineral density changes during the menopausal transition.绝经过渡期间骨密度变化的激素预测指标
J Clin Endocrinol Metab. 2006 Apr;91(4):1261-7. doi: 10.1210/jc.2005-1836. Epub 2006 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验