Suppr超能文献

将不良事件自发报告系统模拟为优先连接网络:应用于疫苗不良事件报告系统。

Simulating adverse event spontaneous reporting systems as preferential attachment networks: application to the Vaccine Adverse Event Reporting System.

作者信息

Scott J, Botsis T, Ball R

机构信息

Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration.

出版信息

Appl Clin Inform. 2014 Mar 5;5(1):206-18. doi: 10.4338/ACI-2013-11-RA-0097. eCollection 2014.

Abstract

BACKGROUND

Spontaneous Reporting Systems [SRS] are critical tools in the post-licensure evaluation of medical product safety. Regulatory authorities use a variety of data mining techniques to detect potential safety signals in SRS databases. Assessing the performance of such signal detection procedures requires simulated SRS databases, but simulation strategies proposed to date each have limitations.

OBJECTIVE

We sought to develop a novel SRS simulation strategy based on plausible mechanisms for the growth of databases over time.

METHODS

We developed a simulation strategy based on the network principle of preferential attachment. We demonstrated how this strategy can be used to create simulations based on specific databases of interest, and provided an example of using such simulations to compare signal detection thresholds for a popular data mining algorithm.

RESULTS

The preferential attachment simulations were generally structurally similar to our targeted SRS database, although they had fewer nodes of very high degree. The approach was able to generate signal-free SRS simulations, as well as mimicking specific known true signals. Explorations of different reporting thresholds for the FDA Vaccine Adverse Event Reporting System suggested that using proportional reporting ratio [PRR] > 3.0 may yield better signal detection operating characteristics than the more commonly used PRR > 2.0 threshold.

DISCUSSION

The network analytic approach to SRS simulation based on the principle of preferential attachment provides an attractive framework for exploring the performance of safety signal detection algorithms. This approach is potentially more principled and versatile than existing simulation approaches.

CONCLUSION

The utility of network-based SRS simulations needs to be further explored by evaluating other types of simulated signals with a broader range of data mining approaches, and comparing network-based simulations with other simulation strategies where applicable.

摘要

背景

自发呈报系统(SRS)是药品上市后安全性评估的关键工具。监管机构运用多种数据挖掘技术在SRS数据库中检测潜在的安全信号。评估此类信号检测程序的性能需要模拟SRS数据库,但迄今为止提出的模拟策略都存在局限性。

目的

我们试图基于数据库随时间增长的合理机制开发一种新颖的SRS模拟策略。

方法

我们基于优先连接的网络原理开发了一种模拟策略。我们展示了如何使用该策略基于感兴趣的特定数据库创建模拟,并提供了一个使用此类模拟比较一种流行数据挖掘算法的信号检测阈值的示例。

结果

优先连接模拟在结构上通常与我们的目标SRS数据库相似,尽管其高度数节点较少。该方法能够生成无信号的SRS模拟,也能模拟特定的已知真实信号。对美国食品药品监督管理局(FDA)疫苗不良事件报告系统不同报告阈值的探索表明,使用比例报告比(PRR)> 3.0可能比更常用的PRR > 2.0阈值产生更好的信号检测操作特征。

讨论

基于优先连接原理的SRS模拟网络分析方法为探索安全信号检测算法的性能提供了一个有吸引力的框架。该方法可能比现有模拟方法更具原则性和通用性。

结论

基于网络的SRS模拟的实用性需要通过使用更广泛的数据挖掘方法评估其他类型的模拟信号,并在适用时将基于网络的模拟与其他模拟策略进行比较来进一步探索。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验