Suppr超能文献

细菌与昆虫共生的分子基础。

The molecular basis of bacterial-insect symbiosis.

作者信息

Douglas Angela E

机构信息

Department of Entomology and Department of Molecular Biology and Genetics, 5134 Comstock Hall, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2014 Nov 25;426(23):3830-7. doi: 10.1016/j.jmb.2014.04.005. Epub 2014 Apr 13.

Abstract

Insects provide experimentally tractable and cost-effective model systems to investigate the molecular basis of animal-bacterial interactions. Recent research is revealing the central role of the insect innate immune system, especially anti-microbial peptides and reactive oxygen species, in regulating the abundance and composition of the microbiota in various insects, including Drosophila and the mosquitoes Aedes and Anopheles. Interactions between the immune system and microbiota are, however, bidirectional with evidence that members of the resident microbiota can promote immune function, conferring resistance to pathogens and parasites by both activation of immune effectors and production of toxins. Antagonistic and mutualistic interactions among bacteria have also been implicated as determinants of the microbiota composition, including exclusion of pathogens, but the molecular mechanisms are largely unknown. Some bacteria are crucial for insect nutrition, through provisioning of specific nutrients (e.g., B vitamins, essential amino acids) and modulation of the insect nutritional sensing and signaling pathways (e.g., insulin signaling) that regulate nutrient allocation, especially to lipid and other energy reserves. A key challenge for future research is to identify the molecular interaction between specific bacterial effectors and animal receptors, as well as to determine how these interactions translate into microbiota-dependent signaling, metabolism, and immune function in the host.

摘要

昆虫为研究动物与细菌相互作用的分子基础提供了易于实验操作且成本效益高的模型系统。最近的研究揭示了昆虫先天免疫系统,尤其是抗菌肽和活性氧在调节包括果蝇、伊蚊和按蚊在内的各种昆虫体内微生物群的丰度和组成方面的核心作用。然而,免疫系统与微生物群之间的相互作用是双向的,有证据表明常驻微生物群的成员可以促进免疫功能,通过激活免疫效应器和产生毒素来赋予对病原体和寄生虫的抗性。细菌之间的拮抗和共生相互作用也被认为是微生物群组成的决定因素,包括排除病原体,但其分子机制大多未知。一些细菌对昆虫营养至关重要,通过提供特定营养物质(如B族维生素、必需氨基酸)以及调节昆虫营养感知和信号通路(如胰岛素信号通路)来调节营养分配,尤其是对脂质和其他能量储备的分配。未来研究的一个关键挑战是确定特定细菌效应器与动物受体之间的分子相互作用,以及确定这些相互作用如何转化为宿主中依赖微生物群的信号传导、代谢和免疫功能。

相似文献

1
The molecular basis of bacterial-insect symbiosis.细菌与昆虫共生的分子基础。
J Mol Biol. 2014 Nov 25;426(23):3830-7. doi: 10.1016/j.jmb.2014.04.005. Epub 2014 Apr 13.
2
The gut microbiota of insects - diversity in structure and function.昆虫肠道微生物群——结构与功能的多样性。
FEMS Microbiol Rev. 2013 Sep;37(5):699-735. doi: 10.1111/1574-6976.12025. Epub 2013 Jun 17.
4
The hemolymph microbiome of insects.昆虫的血淋巴微生物组。
J Insect Physiol. 2019 May-Jun;115:33-39. doi: 10.1016/j.jinsphys.2019.04.002. Epub 2019 Apr 3.
5
The gut bacteria of insects: nonpathogenic interactions.昆虫的肠道细菌:非致病性相互作用
Annu Rev Entomol. 2004;49:71-92. doi: 10.1146/annurev.ento.49.061802.123416.
7
Multiorganismal insects: diversity and function of resident microorganisms.多生物体昆虫:常驻微生物的多样性与功能
Annu Rev Entomol. 2015 Jan 7;60:17-34. doi: 10.1146/annurev-ento-010814-020822. Epub 2014 Oct 8.

引用本文的文献

3
/Triatomine Interactions-A Review.锥猎蝽相互作用——综述
Pathogens. 2025 Apr 17;14(4):392. doi: 10.3390/pathogens14040392.

本文引用的文献

1
Symbiotic digestion of lignocellulose in termite guts.白蚁肠道中木质纤维素的共生消化。
Nat Rev Microbiol. 2014 Mar;12(3):168-80. doi: 10.1038/nrmicro3182. Epub 2014 Feb 3.
5
Tsetse fly microbiota: form and function.采采蝇肠道微生物群:形态与功能。
Front Cell Infect Microbiol. 2013 Oct 29;3:69. doi: 10.3389/fcimb.2013.00069. eCollection 2013.
7
Shared metabolic pathways in a coevolved insect-bacterial symbiosis.共生昆虫-细菌关系中的共同代谢途径。
Appl Environ Microbiol. 2013 Oct;79(19):6117-23. doi: 10.1128/AEM.01543-13. Epub 2013 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验