Suppr超能文献

外部pH值对离体蛙皮渗透通透性、离子及液体转运的影响。

The effect of external pH on osmotic permeability, ion and fluid transport across isolated frog skin.

作者信息

Fischbarg J, Whittembury G

出版信息

J Physiol. 1978 Feb;275:403-17. doi: 10.1113/jphysiol.1978.sp012197.

Abstract
  1. The rate of volume flow across frog skin induced by an osmotic gradient was measured when normal (7.4) and low pH (2.28) solutions bathed the outside. The osmotic permeabilities (Pos) were 2.4 +/- 0.4 and 4.8 +/- 1.0 micrometer/sec, respectively. The change in Pos induced by low pH was reversible. 2. Volume flow in the absence of an osmotic gradient was measured at normal and low pH. Values were 0.69 +/- 0.13 and 1.1 +/- 0.2 microliter/hr. cm2, respectively; the paired differences were significant (P less than 0.0025). This change in rate was partially reversible upon return to normal pH. 3. The potential difference (V) and short-circuit current (Is) across skins were measured under several conditions and the following equivalent parameters in a simplified electrical model were computed: total resistance (Rt); shunt resistance (Rs); electromotive force of the pump (ENa); and salt transport at open circuit (JNaCl). Representative figures were (a), at pH 7.4: Is = 14 +/- 1.6 microampere/cm2; Rt = 3.3 +/- 0.4 komega.cm2; Rs = 7.2 +/- 1.0 komega.cm2; ENA = 103 +/- 38 mV; JNaCl = 7.2 +/- 1.2 microampere/cm2; (b) at pH 2.28: Is = 8.3 +/- 2.1 microampere/cm2; Rt = 0.46 +/- 0.12 komega. cm2; Rs = 0.65 +/- 0.06 komega.cm2; ENa = 59 +/- 25 mV; JNaCl = 9.4 +/- 3.3 microampere/cm2. 4. From the electrical parameters measured concomitantly with the rate of fluid transport in given experiments, the expected salt concentration of the transported fluid was 0.30 +/- 0.08 and 0.38 +/- 0.08 mole/l. at normal and low pH, respectively, or some 3-4 times hyperosmotic with respect to the medium. 5. Treatment with low pH on the outside has been found to open the intercellular junctions in previous studies. The present results suggest that, if such an effect occurs, it is localized only to a small fraction of the cell perimeter. Making certain assumptions that fraction could be as low as 0.003. 6. Low pH on the outside reversibly changes the electrical parameters of a 'tight' epithelium like the frog skin into values more typical of 'intermediate' epithelia; both the total and shunt resistances decrease to about 0.1 of their normal values. These changes do not apparently affect the osmolarity of the transported fluid.
摘要
  1. 当用正常(pH 7.4)和低pH(2.28)溶液浸泡青蛙皮肤外部时,测量了由渗透梯度引起的跨青蛙皮肤的体积流率。渗透渗透率(Pos)分别为2.4±0.4和4.8±1.0微米/秒。低pH引起的Pos变化是可逆的。2. 在正常和低pH条件下测量了无渗透梯度时的体积流。数值分别为0.69±0.13和1.1±0.2微升/小时·平方厘米;配对差异具有显著性(P<0.0025)。恢复到正常pH后,该流率变化部分可逆。3. 在几种条件下测量了跨皮肤的电位差(V)和短路电流(Is),并计算了简化电模型中的以下等效参数:总电阻(Rt);分流电阻(Rs);泵的电动势(ENa);以及开路时的盐转运(JNaCl)。代表性数据为:(a)在pH 7.4时:Is = 14±1.6微安/平方厘米;Rt = 3.3±0.4千欧·平方厘米;Rs = 7.2±1.0千欧·平方厘米;ENa = 103±38毫伏;JNaCl = 7.2±1.2微安/平方厘米;(b)在pH 2.28时:Is = 8.3±2.1微安/平方厘米;Rt = 0.46±0.12千欧·平方厘米;Rs = 0.65±0.06千欧·平方厘米;ENa = 59±25毫伏;JNaCl = 9.4±3.3微安/平方厘米。4. 根据给定实验中与液体运输速率同时测量的电参数,正常和低pH时运输液体的预期盐浓度分别为0.30±0.08和0.38±0.08摩尔/升,相对于介质约为高渗3 - 4倍。5. 在先前的研究中发现,外部用低pH处理会打开细胞间连接。目前的结果表明,如果发生这种效应,它仅局限于细胞周长的一小部分。做出某些假设后,该部分可能低至0.003。6. 外部低pH将青蛙皮肤这种“紧密”上皮的电参数可逆地改变为更典型的“中间”上皮的值;总电阻和分流电阻均降至其正常值的约十分之一。这些变化显然不影响运输液体的渗透压。

相似文献

1
The effect of external pH on osmotic permeability, ion and fluid transport across isolated frog skin.
J Physiol. 1978 Feb;275:403-17. doi: 10.1113/jphysiol.1978.sp012197.
6
An upper limit to the number of sodium channels in frog skin epithelium.
J Physiol. 1973 Feb;228(3):681-92. doi: 10.1113/jphysiol.1973.sp010106.
8
Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa.
Pflugers Arch. 1988 Mar;411(3):243-51. doi: 10.1007/BF00585110.
9
Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.
J Physiol. 1977 May;267(1):137-66. doi: 10.1113/jphysiol.1977.sp011805.
10
Electrical and transport characteristics of skin of larval Rana catesbeiana.
Am J Physiol. 1979 Jul;237(1):R74-9. doi: 10.1152/ajpregu.1979.237.1.R74.

引用本文的文献

1
pH- and voltage-dependent conductances in toad skin.
J Membr Biol. 1995 Nov;148(1):1-11. doi: 10.1007/BF00234151.
2
Modulation of tight junction morphology and permeability by an epithelial factor.
J Membr Biol. 1994 Apr;139(1):41-8. doi: 10.1007/BF00232673.
7
Pathophysiology of acute acid injury in rabbit esophageal epithelium.
J Clin Invest. 1981 Jul;68(1):286-93. doi: 10.1172/jci110246.
8
Water permeability of the toad corneal epithelium: the effects of pH and amphotericin B.
Pflugers Arch. 1980 Jan;383(2):131-6. doi: 10.1007/BF00581873.
9
Cellular Li+ opens paracellular path in toad skin: amiloride blockable effect.
J Membr Biol. 1983;74(1):59-65. doi: 10.1007/BF01870595.
10
Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP.
Proc Natl Acad Sci U S A. 1982 Mar;79(6):2111-5. doi: 10.1073/pnas.79.6.2111.

本文引用的文献

1
Transport pathways in biological membranes.
Annu Rev Physiol. 1974;36:17-49. doi: 10.1146/annurev.ph.36.030174.000313.
2
Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.
Acta Physiol Scand. 1951 Aug 25;23(2-3):110-27. doi: 10.1111/j.1748-1716.1951.tb00800.x.
3
Osmotic behaviour of the epithelial cells of frog skin.
Acta Physiol Scand. 1961 Nov-Dec;53:348-65. doi: 10.1111/j.1748-1716.1961.tb02293.x.
5
THE NATURE OF WATER TRANSPORT ACROSS FROG SKIN.
Biophys J. 1964 Sep;4(5):401-16. doi: 10.1016/s0006-3495(64)86791-6.
6
Non-osmotic water movement across the isolated frog skin.
J Cell Comp Physiol. 1960 Jun;55:267-73. doi: 10.1002/jcp.1030550309.
7
8
The mode of passage of chloride ions through the isolated frog skin.
Acta Physiol Scand. 1952 Jun 6;25(2-3):150-63. doi: 10.1111/j.1748-1716.1952.tb00866.x.
9
10
Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies.
Am J Physiol. 1969 Aug;217(2):570-80. doi: 10.1152/ajplegacy.1969.217.2.570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验