Department of Biotechnology, School of Engineering of Lorena, Estrada Municipal do Campinho, University of São Paulo, Caixa Postal 116 12.602.810, Lorena, São Paulo, Brazil.
Materials Spectroscopy Laboratory, Department of Physics, Federal University of Juiz de Fora, Juiz de Fora 36036-330 Minas Gerais, Brazil.
Biotechnol Biofuels. 2014 Apr 16;7:63. doi: 10.1186/1754-6834-7-63. eCollection 2014.
Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis. We hypothesized that consecutive dilute sulfuric acid-dilute sodium hydroxide pretreatment would overcome the native recalcitrance of sugarcane bagasse (SB) by enhancing cellulase accessibility of the embedded cellulosic microfibrils.
SB hemicellulosic hydrolysate after concentration by vacuum evaporation and detoxification showed 30.89 g/l xylose along with other products (0.32 g/l glucose, 2.31 g/l arabinose, and 1.26 g/l acetic acid). The recovered cellulignin was subsequently delignified by sodium hydroxide mediated pretreatment. The acid-base pretreated material released 48.50 g/l total reducing sugars (0.91 g sugars/g cellulose amount in SB) after enzymatic hydrolysis. Ultra-structural mapping of acid-base pretreated and enzyme hydrolyzed SB by microscopic analysis (scanning electron microcopy (SEM), transmitted light microscopy (TLM), and spectroscopic analysis (X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy) elucidated the molecular changes in hemicellulose, cellulose, and lignin components of bagasse. The detoxified hemicellulosic hydrolysate was fermented by Scheffersomyces shehatae (syn. Candida shehatae UFMG HM 52.2) and resulted in 9.11 g/l ethanol production (yield 0.38 g/g) after 48 hours of fermentation. Enzymatic hydrolysate when fermented by Saccharomyces cerevisiae 174 revealed 8.13 g/l ethanol (yield 0.22 g/g) after 72 hours of fermentation.
Multi-scale structural studies of SB after sequential acid-base pretreatment and enzymatic hydrolysis showed marked changes in hemicellulose and lignin removal at molecular level. The cellulosic material showed high saccharification efficiency after enzymatic hydrolysis. Hemicellulosic and cellulosic hydrolysates revealed moderate ethanol production by S. shehatae and S. cerevisiae under batch fermentation conditions.
汽油的大量使用、燃料价格的飞涨以及环境问题为纤维素乙醇的探索铺平了道路。纤维素乙醇生产技术正在兴起,需要不断的技术进步。最具挑战性的问题之一是木质纤维素生物质的预处理,以获得酶解后的理想糖产量。我们假设连续的稀硫酸-稀氢氧化钠预处理可以通过提高嵌入的纤维素微纤维的纤维素酶可及性来克服甘蔗渣(SB)的天然抗降解性。
通过真空蒸发浓缩和解毒后的 SB 半纤维素水解液显示出 30.89 g/l 的木糖,以及其他产物(0.32 g/l 的葡萄糖、2.31 g/l 的阿拉伯糖和 1.26 g/l 的乙酸)。回收的纤维素木质素随后通过氢氧化钠介导的预处理进行脱木质素。酸碱预处理后的材料在酶解后释放出 48.50 g/l 的总还原糖(SB 中纤维素量为 0.91 g 糖/g)。通过微观分析(扫描电子显微镜(SEM)、透射光显微镜(TLM)和光谱分析(X 射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、傅里叶变换近红外(FT-NIR)光谱和核磁共振(NMR)光谱)对酸碱预处理和酶水解的 SB 进行超结构映射,阐明了半纤维素、纤维素和木质素成分的分子变化。经解毒的半纤维素水解液由 Scheffersomyces shehatae(同义词 Candida shehatae UFMG HM 52.2)发酵,在发酵 48 小时后产生 9.11 g/l 的乙醇(产率 0.38 g/g)。当用 Saccharomyces cerevisiae 174 发酵酶解产物时,在发酵 72 小时后产生 8.13 g/l 的乙醇(产率 0.22 g/g)。
SB 经过顺序酸碱预处理和酶水解后的多尺度结构研究表明,在分子水平上半纤维素和木质素的去除有明显变化。纤维素材料在酶解后具有较高的糖化效率。在分批发酵条件下,半纤维素和纤维素水解物通过 S. shehatae 和 S. cerevisiae 产生中等水平的乙醇。