Suppr超能文献

用于高倍率长寿命锂电池的组装成中空微球的 VO2 纳米线。

VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries.

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology , Wuhan 430070, China.

出版信息

Nano Lett. 2014 May 14;14(5):2873-8. doi: 10.1021/nl500915b. Epub 2014 Apr 21.

Abstract

Development of three-dimensional nanostructures with high surface area and excellent structural stability is an important approach for realizing high-rate and long-life battery electrodes. Here, we report VO2 hollow microspheres showing empty spherical core with radially protruding nanowires, synthesized through a facile and controllable ion-modulating approach. In addition, by controlling the self-assembly of negatively charged C12H25SO4(-) spherical micelles and positively charged VO(2+) ions, six-armed microspindles and random nanowires are also prepared. Compared with them, VO2 hollow microspheres show better electrochemical performance. At high current density of 2 A/g, VO2 hollow microspheres exhibit 3 times higher capacity than that of random nanowires, and 80% of the original capacity is retained after 1000 cycles. The superior performance of VO2 hollow microspheres is because they exhibit high surface area about twice higher than that of random nanowires and also provide an efficient self-expansion and self-shrinkage buffering during lithiation/delithiation, which effectively inhibits the self-aggregation of nanowires. This research indicates that VO2 hollow microspheres have great potential for high-rate and long-life lithium batteries.

摘要

开发具有高表面积和优异结构稳定性的三维纳米结构是实现高倍率和长寿命电池电极的重要途径。在这里,我们报告了通过简便可控的离子调节方法合成的具有空心球形核和径向突出纳米线的 VO2 空心微球。此外,通过控制带负电荷的 C12H25SO4(-) 球形胶束和带正电荷的 VO(2+) 离子的自组装,还制备了六臂微纺丝和随机纳米线。与它们相比,VO2 空心微球表现出更好的电化学性能。在高电流密度 2 A/g 下,VO2 空心微球的容量比随机纳米线高 3 倍,经过 1000 次循环后,仍保留 80%的原始容量。VO2 空心微球的优异性能是因为它们具有高表面积,大约是随机纳米线的两倍,并且在锂化/脱锂过程中提供了有效的自扩展和自收缩缓冲,有效抑制了纳米线的自聚集。这项研究表明,VO2 空心微球在高倍率和长寿命锂电池中有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验