Suppr超能文献

长期增强过程中树突棘亚结构的结构和分子重塑。

Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.

机构信息

RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Neuron. 2014 Apr 16;82(2):444-59. doi: 10.1016/j.neuron.2014.03.021.

Abstract

Synapses store information by long-lasting modifications of their structure and molecular composition, but the precise chronology of these changes has not been studied at single-synapse resolution in real time. Here we describe the spatiotemporal reorganization of postsynaptic substructures during long-term potentiation (LTP) at individual dendritic spines. Proteins translocated to the spine in four distinct patterns through three sequential phases. In the initial phase, the actin cytoskeleton was rapidly remodeled while active cofilin was massively transported to the spine. In the stabilization phase, cofilin formed a stable complex with F-actin, was persistently retained at the spine, and consolidated spine expansion. In contrast, the postsynaptic density (PSD) was independently remodeled, as PSD scaffolding proteins did not change their amount and localization until a late protein synthesis-dependent third phase. Our findings show how and when spine substructures are remodeled during LTP and explain why synaptic plasticity rules change over time.

摘要

突触通过其结构和分子组成的持久变化来存储信息,但这些变化的确切时间顺序尚未在实时的单突触分辨率下进行研究。在这里,我们描述了在单个树突棘的长时程增强(LTP)过程中,突触后亚结构的空间和时间重组。蛋白质通过三个连续的阶段以四种不同的模式转运到棘突。在初始阶段,肌动蛋白细胞骨架迅速重塑,同时大量的活性丝切蛋白被转运到棘突。在稳定阶段,丝切蛋白与 F-肌动蛋白形成稳定的复合物,持续保留在棘突上,并巩固了棘突扩张。相比之下,突触后密度(PSD)是独立重塑的,因为 PSD 支架蛋白的数量和定位直到依赖晚期蛋白质合成的第三个阶段才发生变化。我们的研究结果表明了在 LTP 过程中棘突亚结构是如何以及何时重塑的,并解释了为什么突触可塑性规则会随时间而变化。

相似文献

1
Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.
Neuron. 2014 Apr 16;82(2):444-59. doi: 10.1016/j.neuron.2014.03.021.
2
ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity.
Nat Neurosci. 2010 Oct;13(10):1208-15. doi: 10.1038/nn.2634. Epub 2010 Sep 12.
4
Balance and stability of synaptic structures during synaptic plasticity.
Neuron. 2014 Apr 16;82(2):430-43. doi: 10.1016/j.neuron.2014.02.031.
5
Rapid Ultrastructural Changes in the PSD and Surrounding Membrane after Induction of Structural LTP in Single Dendritic Spines.
J Neurosci. 2021 Aug 18;41(33):7003-7014. doi: 10.1523/JNEUROSCI.1964-20.2021. Epub 2021 Jul 15.
7
Location-dependent synaptic plasticity rules by dendritic spine cooperativity.
Nat Commun. 2016 Apr 21;7:11380. doi: 10.1038/ncomms11380.
8
A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function.
Neuropharmacology. 2009 Jan;56(1):81-9. doi: 10.1016/j.neuropharm.2008.07.031. Epub 2008 Aug 5.
9
Spine expansion and stabilization associated with long-term potentiation.
J Neurosci. 2008 May 28;28(22):5740-51. doi: 10.1523/JNEUROSCI.3998-07.2008.
10
Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.
Cereb Cortex. 2018 Apr 1;28(4):1087-1104. doi: 10.1093/cercor/bhx009.

引用本文的文献

6
Rab10 inactivation promotes AMPAR trafficking and spine enlargement during long-term potentiation.
bioRxiv. 2025 May 28:2022.05.17.492345. doi: 10.1101/2022.05.17.492345.
7
Role of LIMK1-cofilin-actin axis in dendritic spine dynamics in Alzheimer's disease.
Cell Death Dis. 2025 Jun 3;16(1):431. doi: 10.1038/s41419-025-07741-7.
8
Neuronal Synaptic Communication and Mitochondrial Energetics in Human Health and Disease.
Adv Exp Med Biol. 2025;1477:105-137. doi: 10.1007/978-3-031-89525-8_5.
9
10
CXCL12 Engages Cortical Inhibitory Neurons to Enhance Dendritic Spine Plasticity and Structured Network Activity.
J Neurosci. 2025 Jun 11;45(24):e2213242025. doi: 10.1523/JNEUROSCI.2213-24.2025.

本文引用的文献

1
Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation.
Neuropharmacology. 2013 Jan;64(1):27-36. doi: 10.1016/j.neuropharm.2012.07.006. Epub 2012 Jul 20.
2
Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):E442-51. doi: 10.1073/pnas.1118803109. Epub 2012 Jan 30.
3
Structural plasticity of dendritic spines.
Curr Opin Neurobiol. 2012 Jun;22(3):383-8. doi: 10.1016/j.conb.2011.09.002. Epub 2011 Sep 28.
4
Local, persistent activation of Rho GTPases during plasticity of single dendritic spines.
Nature. 2011 Apr 7;472(7341):100-4. doi: 10.1038/nature09823. Epub 2011 Mar 20.
5
The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP.
Neuron. 2011 Jan 13;69(1):132-46. doi: 10.1016/j.neuron.2010.12.008.
6
Making memories last: the synaptic tagging and capture hypothesis.
Nat Rev Neurosci. 2011 Jan;12(1):17-30. doi: 10.1038/nrn2963.
7
ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity.
Nat Neurosci. 2010 Oct;13(10):1208-15. doi: 10.1038/nn.2634. Epub 2010 Sep 12.
9
AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15951-6. doi: 10.1073/pnas.0913875107. Epub 2010 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验