Suppr超能文献

晚期癌症患者队列生存情况的纵向时间和概率预测。

Longitudinal temporal and probabilistic prediction of survival in a cohort of patients with advanced cancer.

作者信息

Perez-Cruz Pedro E, Dos Santos Renata, Silva Thiago Buosi, Crovador Camila Souza, Nascimento Maria Salete de Angelis, Hall Stacy, Fajardo Julieta, Bruera Eduardo, Hui David

机构信息

Programa Medicina Paliativa y Cuidados Continuos, Departamento Medicina Interna, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Palliative Care and Rehabilitation Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.

Department of Palliative Care, Barretos Cancer Hospital, Barretos, Brazil.

出版信息

J Pain Symptom Manage. 2014 Nov;48(5):875-82. doi: 10.1016/j.jpainsymman.2014.02.007. Epub 2014 Apr 16.

Abstract

CONTEXT

Survival prognostication is important during the end of life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized.

OBJECTIVES

The aims of the study were to examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches.

METHODS

Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at Day -14 (baseline) with accuracy at each time point using a test of proportions.

RESULTS

A total of 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 days (4-20 days). Temporal CPS had low accuracy (10%-40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (P < .05 at each time point) but decreased close to death.

CONCLUSION

Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary.

摘要

背景

生存预后评估在生命末期至关重要。临床医生对生存时间的预测准确性(CPS)随时间的变化情况尚未得到充分描述。

目的

本研究旨在探讨入住两个急性姑息治疗病房的晚期癌症患者队列在生命最后14天内预后评估准确性的变化,并比较时间法和概率法之间的准确性。

方法

医生和护士使用时间法和概率法这两种预后评估方法,每天对两家医院的癌症患者进行生存预后评估,直至患者死亡或出院。在生命的最后14天里,我们每天评估每种方法的准确性,使用比例检验将第-14天(基线)的准确性与每个时间点的准确性进行比较。

结果

医生和护士分别为311例患者提供了6718次时间法和6621次概率法的评估。中位(四分位间距)生存时间为8天(4-20天)。时间法CPS的准确性较低(10%-40%),且不随时间变化。相比之下,概率法CPS显著更准确(每个时间点P < 0.05),但在接近死亡时准确性下降。

结论

在生命的最后14天里,概率法CPS始终比时间法CPS更准确;然而,随着患者接近死亡,其准确性会下降。我们的研究结果表明,需要更好的工具来预测即将到来的死亡。

相似文献

1
Longitudinal temporal and probabilistic prediction of survival in a cohort of patients with advanced cancer.
J Pain Symptom Manage. 2014 Nov;48(5):875-82. doi: 10.1016/j.jpainsymman.2014.02.007. Epub 2014 Apr 16.
3
A Comparison of the Accuracy of Clinician Prediction of Survival Versus the Palliative Prognostic Index.
J Pain Symptom Manage. 2018 Mar;55(3):792-797. doi: 10.1016/j.jpainsymman.2017.11.028. Epub 2017 Dec 6.
4
The Accuracy of Physicians' Clinical Predictions of Survival in Patients With Advanced Cancer.
J Pain Symptom Manage. 2015 Aug;50(2):139-46.e1. doi: 10.1016/j.jpainsymman.2015.03.004. Epub 2015 Apr 4.
5
Clinician prediction of survival versus the Palliative Prognostic Score: Which approach is more accurate?
Eur J Cancer. 2016 Sep;64:89-95. doi: 10.1016/j.ejca.2016.05.009. Epub 2016 Jun 30.
7
How different are accuracies of clinicians' prediction of survival by assessment methods?
Ann Palliat Med. 2024 Jan;13(1):49-56. doi: 10.21037/apm-23-393. Epub 2023 Dec 13.
8
Accuracy of the Palliative Prognostic Score With or Without Clinicians' Prediction of Survival in Patients With Far Advanced Cancer.
J Pain Symptom Manage. 2021 Jun;61(6):1180-1187. doi: 10.1016/j.jpainsymman.2020.10.019. Epub 2020 Oct 21.
10
Physicians' clinical prediction of survival in head and neck cancer patients in the palliative phase.
BMC Palliat Care. 2020 Nov 24;19(1):176. doi: 10.1186/s12904-020-00682-2.

引用本文的文献

1
Initiating Prognostic Talk During Hospice Multidisciplinary Team Meetings: A Conversation Analytic Study.
J Palliat Care. 2025 Apr;40(2):183-189. doi: 10.1177/08258597241286347. Epub 2024 Nov 14.
4
Accuracy of oncologists' estimates of expected survival time in advanced cancer.
JNCI Cancer Spectr. 2023 Oct 31;7(6). doi: 10.1093/jncics/pkad094.
6
Management of Physical Symptoms in Patients with Advanced Cancer during the Last Weeks and Days of Life.
Cancer Res Treat. 2022 Jul;54(3):661-670. doi: 10.4143/crt.2022.143. Epub 2022 Jun 30.
7
Prognostication of the Last Days of Life.
Cancer Res Treat. 2022 Jul;54(3):631-643. doi: 10.4143/crt.2021.1573. Epub 2022 Mar 30.
8
Quality of dying in hospital general wards: a cross-sectional study about the end-of-life care.
BMC Palliat Care. 2021 Oct 12;20(1):153. doi: 10.1186/s12904-021-00862-8.
9
Prognosticating for Adult Patients With Advanced Incurable Cancer: a Needed Oncologist Skill.
Curr Treat Options Oncol. 2020 Jan 16;21(1):5. doi: 10.1007/s11864-019-0698-2.

本文引用的文献

3
Clinician accuracy when estimating survival duration: the role of the patient's performance status and time-based prognostic categories.
J Pain Symptom Manage. 2011 Oct;42(4):578-88. doi: 10.1016/j.jpainsymman.2011.01.012. Epub 2011 May 12.
4
Predicting survival in patients with advanced disease.
Eur J Cancer. 2008 May;44(8):1146-56. doi: 10.1016/j.ejca.2008.02.030. Epub 2008 Apr 3.
6
Clinical predictors of survival in advanced cancer.
J Support Oncol. 2005 Sep-Oct;3(5):331-9.
7
A systematic review of physicians' survival predictions in terminally ill cancer patients.
BMJ. 2003 Jul 26;327(7408):195-8. doi: 10.1136/bmj.327.7408.195.
9
Survival prediction in terminal cancer patients: a systematic review of the medical literature.
Palliat Med. 2000 Sep;14(5):363-74. doi: 10.1191/026921600701536192.
10
Terminal cancer. duration and prediction of survival time.
Eur J Cancer. 2000 Oct;36(16):2036-43. doi: 10.1016/s0959-8049(00)00291-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验