Suppr超能文献

一种基于判别距离的用于气味分类的复合向量选择方法。

A discriminant distance based composite vector selection method for odor classification.

作者信息

Choi Sang-Il, Jeong Gu-Min

机构信息

Department of Applied Computer Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea.

Electrical Engineering, Kookmin University 2, 861-1, Jeongeung-dong, Songbuk-gu, Seoul 136-702, Korea.

出版信息

Sensors (Basel). 2014 Apr 17;14(4):6938-51. doi: 10.3390/s140406938.

Abstract

We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods.

摘要

我们提出了一种用于有效电子鼻系统的复合向量选择方法,该系统即使在嘈杂环境中也能表现良好。从电子鼻数据样本生成的每个复合向量通过计算判别距离进行评估。通过定量测量每个复合向量中的判别信息量,可以区分包含信息变量的复合向量,并使用所选复合向量提取用于气味分类的最终复合特征。使用唯一的信息性复合向量而不是使用所有生成的复合向量也有助于提取更好的复合特征。对不同挥发性有机化合物数据的实验结果表明,与其他方法相比,该系统即使在嘈杂环境中也具有良好的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd8/4029697/1ce00d01c154/sensors-14-06938f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验