Department of Applied Computer Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, 448-701 Gyeonggi-do, Korea.
Sensors (Basel). 2012 Nov 22;12(12):16182-93. doi: 10.3390/s121216182.
We present an effective portable e-nose system that performs well even in noisy environments. Considering the characteristics of the e-nose data, we use an image covariance matrix-based method for extracting discriminant features for vapor classification. To construct composite vectors, primitive variables of the data measured by a sensor array are rearranged. Then, composite features are extracted by utilizing the information about the statistical dependency among multiple primitive variables, and a classifier for vapor classification is designed with these composite features. Experimental results with different volatile organic compounds data show that the proposed system has better classification performance than other methods in a noisy environment.
我们提出了一种有效的便携式电子鼻系统,即使在嘈杂的环境中也能表现出色。考虑到电子鼻数据的特点,我们使用基于图像协方差矩阵的方法来提取用于蒸气分类的判别特征。为了构造组合向量,对传感器阵列测量的数据的原始变量进行重新排列。然后,通过利用多个原始变量之间的统计相关性信息来提取组合特征,并使用这些组合特征设计蒸气分类器。使用不同挥发性有机化合物数据的实验结果表明,与其他方法相比,该系统在噪声环境下具有更好的分类性能。