Suppr超能文献

使用组合特征对便携式电子鼻系统中的气相气味进行分类。

Classification of odorants in the vapor phase using composite features for a portable e-nose system.

机构信息

Department of Applied Computer Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, 448-701 Gyeonggi-do, Korea.

出版信息

Sensors (Basel). 2012 Nov 22;12(12):16182-93. doi: 10.3390/s121216182.

Abstract

We present an effective portable e-nose system that performs well even in noisy environments. Considering the characteristics of the e-nose data, we use an image covariance matrix-based method for extracting discriminant features for vapor classification. To construct composite vectors, primitive variables of the data measured by a sensor array are rearranged. Then, composite features are extracted by utilizing the information about the statistical dependency among multiple primitive variables, and a classifier for vapor classification is designed with these composite features. Experimental results with different volatile organic compounds data show that the proposed system has better classification performance than other methods in a noisy environment.

摘要

我们提出了一种有效的便携式电子鼻系统,即使在嘈杂的环境中也能表现出色。考虑到电子鼻数据的特点,我们使用基于图像协方差矩阵的方法来提取用于蒸气分类的判别特征。为了构造组合向量,对传感器阵列测量的数据的原始变量进行重新排列。然后,通过利用多个原始变量之间的统计相关性信息来提取组合特征,并使用这些组合特征设计蒸气分类器。使用不同挥发性有机化合物数据的实验结果表明,与其他方法相比,该系统在噪声环境下具有更好的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/865f/3571777/8aa96ee27d52/sensors-12-16182f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验