Suppr超能文献

多参数光学分析活体神经元生理和病理过程中线粒体氧化还原信号。

Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo.

机构信息

1] Institute for Neuronal Cell Biology, Technical University Munich, Munich, Germany. [2] Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany. [3].

1] Institute for Neuronal Cell Biology, Technical University Munich, Munich, Germany. [2] Institute of Clinical Neuroimmunology, Ludwig-Maximilians University Munich, Munich, Germany.

出版信息

Nat Med. 2014 May;20(5):555-60. doi: 10.1038/nm.3520. Epub 2014 Apr 20.

Abstract

Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain-dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.

摘要

线粒体氧化还原信号在神经元生理和疾病中起着核心作用。在这里,我们描述了一种新的光学方法,用于在表达遗传编码氧化还原生物传感器的活体小鼠中以单个细胞器分辨率测量快速氧化还原信号。此外,我们展示了如何使用多个生物传感器进行并行测量,将这些氧化还原信号整合到对线粒体功能的综合表征中。这种方法表明,轴突线粒体经历自发的“收缩”,伴随着可还原的氧化还原变化。神经元活动以及急性或慢性神经元损伤会放大这些收缩。多参数成像显示,收缩是与基质碱化相一致的呼吸链依赖性去极化事件,随后是解偶联。相比之下,脊髓损伤后的永久性线粒体损伤取决于钙内流和线粒体通透性转换。因此,我们的方法使我们能够识别生理和病理氧化还原信号之间的异质性,将这些信号与功能和结构细胞器动力学相关联,并剖析潜在的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验