Suppr超能文献

CasA 介导 Cas3 催化的 CRISPR RNA 引导的干扰过程中的靶标降解。

CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

机构信息

Department of Molecular and Cell Biology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, and Department of Chemistry, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23. doi: 10.1073/pnas.1405079111. Epub 2014 Apr 18.

Abstract

In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

摘要

在细菌中,成簇规律间隔短回文重复序列 (CRISPR)-相关 (Cas) DNA 靶向复合物级联 (CRISPR 相关的抗病毒防御复合物) 使用 CRISPR RNA (crRNA) 引导物结合与三核苷酸特征序列相邻的互补 DNA 靶标,该序列称为前导序列相邻基序 (PAM)。然后,级联复合物招募 Cas3,一种核酸酶解旋酶,它催化与 crRNA 序列匹配的外来双链 DNA (dsDNA) 的解旋和切割。级联复合物由 CasA-E 蛋白和一个 crRNA 组成,形成一种结合和解开 dsDNA 的结构,形成 R 环,其中 DNA 的靶链与 32nt RNA 引导序列配对。带有和不带有 Cas3 的 dsDNA 结合的级联单颗粒电子显微镜重建显示,级联将 DNA 双链体的 PAM 近端末端定位在 CasA 亚基上,并靠近 Cas3 结合的位置。发现 DNA 靶标和 Cas3 与 CasA 共定位表明该亚基在 DNA 干扰过程中的关键靶标验证步骤中起作用。我们通过生化手段表明,PAM 区域的碱基配对对于靶标结合不是必需的,但对于 Cas3 介导的降解是关键的。此外,先前涉及 PAM 识别的 CasA 的 L1 环对于级联结合后 Cas3 的激活是必需的。总之,这些数据表明,级联的 CasA 亚基通过识别 DNA 靶标并将 Cas3 定位在 PAM 附近以确保切割,从而作为 Cas3 的必需伴侣发挥作用。

相似文献

1
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23. doi: 10.1073/pnas.1405079111. Epub 2014 Apr 18.
2
Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
Nature. 2016 Feb 25;530(7591):499-503. doi: 10.1038/nature16995. Epub 2016 Feb 10.
3
Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16359-64. doi: 10.1073/pnas.1410806111. Epub 2014 Nov 3.
4
Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.
Mol Cell. 2016 Sep 1;63(5):852-64. doi: 10.1016/j.molcel.2016.07.011. Epub 2016 Aug 18.
5
Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises RNaseHI.
RNA Biol. 2013 May;10(5):770-8. doi: 10.4161/rna.23876. Epub 2013 Feb 13.
6
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3.
Mol Cell. 2012 Jun 8;46(5):595-605. doi: 10.1016/j.molcel.2012.03.018. Epub 2012 Apr 19.
7
Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.
Nat Struct Mol Biol. 2014 Sep;21(9):771-7. doi: 10.1038/nsmb.2875. Epub 2014 Aug 17.
8
Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein.
Biochem J. 2011 Oct 1;439(1):85-95. doi: 10.1042/BJ20110901.
9
Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3.
Nat Commun. 2022 Aug 30;13(1):4917. doi: 10.1038/s41467-022-32618-0.
10
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.

引用本文的文献

1
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
2
Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.
Int J Mol Sci. 2024 Nov 22;25(23):12544. doi: 10.3390/ijms252312544.
3
CRISPR Diagnostics for Quantification and Rapid Diagnosis of Myotonic Dystrophy Type 1 Repeat Expansion Disorders.
ACS Synth Biol. 2024 Dec 20;13(12):3926-3935. doi: 10.1021/acssynbio.4c00265. Epub 2024 Nov 20.
5
Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.
Mol Cell. 2024 Feb 1;84(3):463-475.e5. doi: 10.1016/j.molcel.2023.12.034. Epub 2024 Jan 18.
7
Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering.
Science. 2023 Nov 24;382(6673):eadi1910. doi: 10.1126/science.adi1910. Epub 2023 Nov 23.
8
Structural and functional investigation of GajB protein in Gabija anti-phage defense.
Nucleic Acids Res. 2023 Nov 27;51(21):11941-11951. doi: 10.1093/nar/gkad951.
9
Repurposing the atypical type I-G CRISPR system for bacterial genome engineering.
Microbiology (Reading). 2023 Aug;169(8). doi: 10.1099/mic.0.001373.
10
Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system.
Nat Commun. 2023 Jun 20;14(1):3654. doi: 10.1038/s41467-023-38790-1.

本文引用的文献

1
CRISPR-based technologies: prokaryotic defense weapons repurposed.
Trends Genet. 2014 Mar;30(3):111-8. doi: 10.1016/j.tig.2014.01.003. Epub 2014 Feb 18.
2
Crystal structure of Cas9 in complex with guide RNA and target DNA.
Cell. 2014 Feb 27;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub 2014 Feb 13.
3
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.
Science. 2014 Mar 14;343(6176):1247997. doi: 10.1126/science.1247997. Epub 2014 Feb 6.
4
Structure of an RNA silencing complex of the CRISPR-Cas immune system.
Mol Cell. 2013 Oct 10;52(1):146-52. doi: 10.1016/j.molcel.2013.09.008.
5
Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus.
Mol Cell. 2013 Oct 10;52(1):135-145. doi: 10.1016/j.molcel.2013.09.013.
6
Structure of the CRISPR interference complex CSM reveals key similarities with cascade.
Mol Cell. 2013 Oct 10;52(1):124-34. doi: 10.1016/j.molcel.2013.08.020.
8
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus.
EMBO J. 2013 Feb 6;32(3):385-94. doi: 10.1038/emboj.2012.352. Epub 2013 Jan 18.
9
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86. doi: 10.1073/pnas.1208507109. Epub 2012 Sep 4.
10
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验