Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA; Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
Mol Cell. 2024 Feb 1;84(3):463-475.e5. doi: 10.1016/j.molcel.2023.12.034. Epub 2024 Jan 18.
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
I 型 CRISPR-Cas 系统利用 RNA 指导的 Cascade 复合物来识别匹配的 DNA 靶标,并用核酸酶解旋酶 Cas3 对其进行降解。在这七种亚型中,I 型-C 结构紧凑,在人类细胞中高效地进行大片段基因组缺失的创建。在这里,我们使用四个冷冻电镜快照以高分辨率定义其 RNA 指导的 DNA 结合和切割机制。非靶 DNA 链(NTS)被 I-C Cascade 容纳在相邻 Cas11 亚基之间的连续结合槽中。Cas3 的结合进一步捕获了 NTS 中的一个灵活凸起,从而实现 NTS 的切割。我们鉴定了两种抗 CRISPR 蛋白 AcrIC8 和 AcrIC9,它们强烈抑制淋病奈瑟菌 I-C 的功能。结构分析表明,AcrIC8 通过别构抑制来抑制 PAM 的识别,而 AcrIC9 通过直接竞争来实现。这两种 Acr 都能有效地抑制 I-C 介导的人类细胞中的基因组编辑和转录调控,为 I 型 CRISPR 真核基因组工程提供了第一个关闭开关。