Suppr超能文献

预测具有分子间环-环碱基配对的 RNA 复合物的结构和稳定性。

Predicting structure and stability for RNA complexes with intermolecular loop-loop base-pairing.

机构信息

Department of Physics and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

RNA. 2014 Jun;20(6):835-45. doi: 10.1261/rna.043976.113. Epub 2014 Apr 21.

Abstract

RNA loop-loop interactions are essential for genomic RNA dimerization and regulation of gene expression. In this article, a statistical mechanics-based computational method that predicts the structures and thermodynamic stabilities of RNA complexes with loop-loop kissing interactions is described. The method accounts for the entropy changes for the formation of loop-loop interactions, which is a notable advancement that other computational models have neglected. Benchmark tests with several experimentally validated systems show that the inclusion of the entropy parameters can indeed improve predictions for RNA complexes. Furthermore, the method can predict not only the native structures of RNA/RNA complexes but also alternative metastable structures. For instance, the model predicts that the SL1 domain of HIV-1 RNA can form two different dimer structures with similar stabilities. The prediction is consistent with experimental observation. In addition, the model predicts two different binding sites for hTR dimerization: One binding site has been experimentally proposed, and the other structure, which has a higher stability, is structurally feasible and needs further experimental validation.

摘要

RNA 环loop 相互作用对于基因组 RNA 二聚化和基因表达调控至关重要。本文描述了一种基于统计力学的计算方法,用于预测具有环loop 亲吻相互作用的 RNA 复合物的结构和热力学稳定性。该方法考虑了形成环loop 相互作用的熵变,这是其他计算模型忽略的显著进展。用几个经过实验验证的系统进行基准测试表明,包含熵参数确实可以提高 RNA 复合物的预测能力。此外,该方法不仅可以预测 RNA/RNA 复合物的天然结构,还可以预测其他亚稳态结构。例如,该模型预测 HIV-1 RNA 的 SL1 结构域可以形成两种具有相似稳定性的不同二聚体结构。该预测与实验观察结果一致。此外,该模型预测了 hTR 二聚化的两个不同结合位点:一个结合位点已被实验提出,另一个结构具有更高的稳定性,在结构上是可行的,需要进一步的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ee/4024638/ffb3c89de80d/835f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验