Suppr超能文献

股部截肢:残肢长度和方向是否对能量消耗有影响?

Transfemoral amputations: is there an effect of residual limb length and orientation on energy expenditure?

机构信息

Center for Performance & Clinical Research, Walter Reed National Military Medical Center, Bethesda, MD, USA,

出版信息

Clin Orthop Relat Res. 2014 Oct;472(10):3055-61. doi: 10.1007/s11999-014-3630-x.

Abstract

BACKGROUND

Energy cost of ambulation has been evaluated using a variety of measures. With aberrant motions resulting from compensatory strategies, persons with transfemoral amputations generally exhibit a larger center of mass excursion and an increased energy cost. However, few studies have analyzed the effect of residual femur length and orientation or energy cost of ambulation.

QUESTIONS/PURPOSES: The purpose of this study was to compare residual limb length and orientation with energy efficiency in patients with transfemoral amputation. We hypothesized that patients with shorter residual limbs and/or more abnormal residual femur alignment would have higher energy expenditure cost and greater center of mass movement than those with longer residual limbs resulting from lacking musculature, shorter and/or misoriented lever arms, and greater effort required to ambulate through use of compensatory movements.

METHODS

Twenty-six adults with acute, trauma-related unilateral transfemoral amputations underwent gait and metabolic analysis testing. Patients were separated into groups for analysis based on residual limb length and residual femoral angle.

RESULTS

Cohorts with longer residual limbs walked faster than those with shorter residual limbs (self-selected walking velocity 1.28 m/s versus 1.11 m/s, measured effect size = 1.08; 95% confidence interval = short 1.10-1.12, long 1.26-1.30; p = 0.04). However, there were no differences found with the numbers available between the compared cohorts regardless of limb length or orientation in regard to O2 cost or other metabolic variables, including the center of mass motion.

CONCLUSIONS

Those with longer residual limbs after transfemoral amputation chose a faster self-selected walking velocity, mirroring previous studies; however, metabolic energy and center of mass metrics did not demonstrate a difference in determining whether energy expenditure is affected by length or orientation of the residual limb after transfemoral amputation. These factors may therefore have less effect on transfemoral amputee gait efficiency and energy requirements than previously thought.

摘要

背景

人们已经使用各种方法评估步行的能量消耗。由于代偿性策略导致的异常运动,股骨截肢者通常表现出更大的质心位移和更高的能量消耗。然而,很少有研究分析残余股骨长度和方向或步行能量消耗的影响。

问题/目的:本研究旨在比较股骨截肢患者的残肢长度和方向与能量效率。我们假设,与具有更长的残肢的患者相比,具有较短的残肢和/或更异常的残肢股骨对线的患者,由于缺乏肌肉、更短和/或错位的力臂以及需要更大的努力来通过代偿性运动进行步行,会有更高的能量消耗成本和更大的质心运动。

方法

26 名患有急性、创伤性单侧股骨截肢的成年人接受了步态和代谢分析测试。根据残肢长度和残肢股骨角度,患者被分为两组进行分析。

结果

残肢较长的队列比残肢较短的队列行走速度更快(自我选择的行走速度 1.28 米/秒对 1.11 米/秒,测量的效应量=1.08;95%置信区间短 1.10-1.12,长 1.26-1.30;p=0.04)。然而,无论肢体长度或方向如何,在比较的队列中,可用的数字之间都没有差异,在 O2 成本或其他代谢变量(包括质心运动)方面都没有差异。

结论

股骨截肢后残肢较长的患者选择了更快的自我选择行走速度,这与以前的研究一致;然而,代谢能量和质心指标并不能表明,能量消耗是否受到股骨截肢后残肢长度或方向的影响。因此,这些因素对股骨截肢患者步态效率和能量需求的影响可能比以前认为的要小。

相似文献

1
Transfemoral amputations: is there an effect of residual limb length and orientation on energy expenditure?
Clin Orthop Relat Res. 2014 Oct;472(10):3055-61. doi: 10.1007/s11999-014-3630-x.
2
Are Gait Parameters for Through-knee Amputees Different From Matched Transfemoral Amputees?
Clin Orthop Relat Res. 2019 Apr;477(4):821-825. doi: 10.1007/s11999.0000000000000212.
3
4
Do patients with bone bridge amputations have improved gait compared with patients with traditional amputations?
Clin Orthop Relat Res. 2014 Oct;472(10):3036-43. doi: 10.1007/s11999-014-3617-7.
5
Temporal Spatial and Metabolic Measures of Walking in Highly Functional Individuals With Lower Limb Amputations.
Arch Phys Med Rehabil. 2017 Jul;98(7):1389-1399. doi: 10.1016/j.apmr.2016.09.134. Epub 2016 Nov 16.
6
Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds.
Prosthet Orthot Int. 2018 Jun;42(3):304-310. doi: 10.1177/0309364617740237. Epub 2017 Nov 9.
8
Does intact limb loading differ in servicemembers with traumatic lower limb loss?
Clin Orthop Relat Res. 2014 Oct;472(10):3068-75. doi: 10.1007/s11999-014-3663-1.
9
Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
Clin Biomech (Bristol). 2018 Jun;55:65-72. doi: 10.1016/j.clinbiomech.2018.04.007. Epub 2018 Apr 12.
10
Energy expenditure of transfemoral amputees during floor and treadmill walking with different speeds.
Prosthet Orthot Int. 2016 Jun;40(3):336-42. doi: 10.1177/0309364615588344. Epub 2015 Oct 8.

引用本文的文献

2
Associations Between Skeletal Alignment and Biomechanical Symmetry Before and After Transfemoral Bone-anchored Limb Implantation.
Clin Orthop Relat Res. 2025 May 1;483(5):902-914. doi: 10.1097/CORR.0000000000003344. Epub 2024 Dec 24.
3
What Are the Factors Associated With Revision Surgery on the Residual Limb and Functional Results in Patients With Posttraumatic Lower Limb Amputations?
Clin Orthop Relat Res. 2025 Mar 1;483(3):501-510. doi: 10.1097/CORR.0000000000003251. Epub 2024 Sep 19.
4
A statistical shape analysis for the assessment of the main geometrical features of the distal femoral medullary canal.
Front Bioeng Biotechnol. 2024 Apr 10;12:1250095. doi: 10.3389/fbioe.2024.1250095. eCollection 2024.
5
Delayed revascularization of extremities following vascular injuries: Challenges and outcome.
J Orthop. 2022 Nov 9;35:31-36. doi: 10.1016/j.jor.2022.10.016. eCollection 2023 Jan.
6
Stumped by the Mystery: A Case Report of Progressive Shortening of Bone Following an Above-Knee Amputation.
Cureus. 2022 Sep 16;14(9):e29222. doi: 10.7759/cureus.29222. eCollection 2022 Sep.
8
Advanced techniques in amputation surgery and prosthetic technology in the lower extremity.
EFORT Open Rev. 2020 Oct 26;5(10):724-741. doi: 10.1302/2058-5241.5.190070. eCollection 2020 Oct.
9
Limb Salvage Versus Amputation: A Review of the Current Evidence.
Cureus. 2020 Aug 28;12(8):e10092. doi: 10.7759/cureus.10092.
10
Metabolic costs of activities of daily living in persons with a lower limb amputation: A systematic review and meta-analysis.
PLoS One. 2019 Mar 20;14(3):e0213256. doi: 10.1371/journal.pone.0213256. eCollection 2019.

本文引用的文献

1
2
Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion.
Gait Posture. 2013 Jan;37(1):78-81. doi: 10.1016/j.gaitpost.2012.06.010. Epub 2012 Jul 24.
3
Reproducibility of the physiological cost index among individuals with a lower-limb amputation and healthy adults.
Physiother Res Int. 2011 Jun;16(2):92-100. doi: 10.1002/pri.477. Epub 2010 May 18.
5
Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints.
Arch Phys Med Rehabil. 2010 Apr;91(4):644-52. doi: 10.1016/j.apmr.2009.12.014.
6
Energy expenditure of walking with prostheses: comparison of three amputation levels.
Prosthet Orthot Int. 2010 Mar;34(1):31-6. doi: 10.3109/03093640903433928.
7
Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait.
Arch Phys Med Rehabil. 2009 Jan;90(1):136-44. doi: 10.1016/j.apmr.2008.07.014.
9
Correlation of residual limb length and gait parameters in amputees.
Injury. 2008 Jul;39(7):728-33. doi: 10.1016/j.injury.2007.11.021. Epub 2008 Jun 9.
10
Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees.
Eur J Appl Physiol. 2008 Aug;103(6):655-63. doi: 10.1007/s00421-008-0764-0. Epub 2008 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验