Irar Sami, González Esther M, Arrese-Igor Cesar, Marino Daniel
Servicio de Proteómica y Metabolómica, CRAG - Centre de Recerca en Agrigenòmica - CSIC IRTA UAB UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdenyola del Valles), 08193, Barcelona, Spain.
Physiol Plant. 2014 Dec;152(4):634-45. doi: 10.1111/ppl.12214. Epub 2014 May 23.
Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signaling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by Pisum sativum and Rhizobium leguminosarum genomes respectively. Among these 18 proteins, 3 proteins related to flavonoid metabolism, 2 to sulfur metabolism and 3 RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
干旱被认为是导致作物减产的更具危害性的非生物胁迫。与根瘤菌共生的豆科植物能够固定大气中的氮。生物固氮(SNF)是一个对干旱非常敏感的过程,限制了豆科植物的农业生产力。已知有几个因素调节生物固氮,包括类菌体的氧气供应、碳和氮代谢;但导致生物固氮抑制的信号通路在很大程度上尚不清楚。在这项工作中,我们对生长在分根系统中的豌豆植株进行了蛋白质组学研究,其中一半根系充分灌溉,另一半则遭受干旱。水分胁迫局部导致根瘤水势降低,进而导致生物固氮局部抑制。蛋白质组学方法揭示了分别由豌豆和豌豆根瘤菌基因组编码的11种和7种受干旱调节的根瘤蛋白。在这18种蛋白质中,鉴定出3种与类黄酮代谢相关的蛋白质、2种与硫代谢相关的蛋白质和3种RNA结合蛋白。这些蛋白质可能是未来致力于提高豆科植物耐旱性研究的分子靶点。此外,这项工作也为解读根瘤中生物固氮调节机制提供了新的线索。