Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom.
PLoS One. 2014 Apr 22;9(4):e95617. doi: 10.1371/journal.pone.0095617. eCollection 2014.
Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in one-electron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (τ<1.5 µs) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (τ∼16 µs). It returns from the b-hemes to heme d with τ∼180 µs. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (τ∼16 µs) yielding a transient hexacoordinate state (CO-Fe2+-L). Then the ligand slowly (τ∼30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (τ∼20 µs), some heme b558 (τ∼0.2-3 ms), and finally migrates from heme d to heme b595 (τ∼24 ms) in ∼5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions.
细胞色素 bd 是一种三血红素(b558、b595、d)呼吸氧还原酶,存在于许多细菌中,包括致病性物种。它将来自醌的电子转移与电化学质子梯度的产生偶联。我们通过微秒时间分辨吸收光谱在 532nm 激发下检查了来自大肠杆菌的分离细胞色素 bd 在单电子还原(MV)和完全还原(R)状态下与 CO 的光解和随后的复合。同时检查了 Soret 和可见带区域。CO 从 MV 酶中的光解可能导致快速(τ<1.5µs)电子从 heme d 转移到蛋白中一小部分的 heme b595,这在以前的报道中没有提到。然后电子迁移到 heme b558(τ∼16µs)。它从 b-血红素返回 heme d 的时间为 τ∼180µs。与 R 状态下的细胞色素 bd 不同,在 MV 酶中,与 heme d 中 CO 光解相关的吸光度变化的表观贡献很小,如果有的话。MV 酶中 heme d 中 CO 的光解被认为伴随着在 heme 相反侧的内部配体(L)的结合。CO 与 heme d (τ∼16µs)重新组合,生成瞬态六配位态(CO-Fe2+-L)。然后配体从 heme d 缓慢(τ∼30ms)解离。MV 样品中部分还原的 heme b 与 CO 的重新组合也可能有助于 30ms 相。在 R 酶中,CO 与 heme d (τ∼20µs)重新组合,一些 heme b558(τ∼0.2-3ms),最后在蛋白的 5%左右从 heme d 迁移到 heme b595(τ∼24ms)。数据与 Rappaport 等人在 640nm 激发下进行的关于膜的最近的纳秒研究一致,但仅限于 Soret 带。由于激发和其他实验条件的差异,揭示了其他阶段。