Suppr超能文献

药用植物糙苏毛状根诱导和植株再生。

Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi.

机构信息

Pharmacognosy and Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Zanjan University of Medical Sciences, P.O.Box 45195-1338, Zanjan, Iran.

National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran - Karaj Highway, Tehran, Iran.

出版信息

Physiol Mol Biol Plants. 2014 Apr;20(2):257-62. doi: 10.1007/s12298-013-0217-z. Epub 2014 Jan 26.

Abstract

An efficient hairy root induction system for an important endangered medicinal plant, Dracocephalum kotschyi, was developed through Agrobacterium rhizogenes-mediated transformation by modifying the co-cultivation medium using five bacterial strains, A4, ATCC15834, LBA9402, MSU440, and A13 (MAFF-02-10266). A drastic increase in transformation frequency was observed when a Murashige and Skoog medium lacking NH4NO3 KH2PO4, KNO3 and CaCl2 was used, resulting in hairy root induction frequencies of 52.3 %, 69.6 %, 48.6 %, 89.0 %, and 80.0 % by A4, A13, LBA9402, MSU440, and ATCC15834 strains, respectively. For shoot induction, hairy roots and unorganized tumors induced by strain ATCC15834 were placed on an MS media supplemented with 0.1, 0.25, 0.5, and 1 mg/l BA plus 0.1 mg/l NAA. The high frequency of shoot regeneration and number of shoot were obtained in the medium containing 0.25 mg/l BA and 0.1 mg/l NAA. Root induction occurred from the base of regenerated shoots on the MS medium supplemented with 0.5 mg/l IBA after 10 days.

摘要

建立了一种高效的发根诱导体系,用于一种重要的濒危药用植物Dracocephalum kotschyi。该体系通过农杆菌介导的转化,利用 5 种菌株(A4、ATCC15834、LBA9402、MSU440 和 A13)对共培养培养基进行改良。当使用缺乏 NH4NO3、KH2PO4、KNO3 和 CaCl2 的 Murashige 和 Skoog 培养基时,转化频率显著增加,导致 A4、A13、LBA9402、MSU440 和 ATCC15834 菌株的发根诱导频率分别为 52.3%、69.6%、48.6%、89.0%和 80.0%。对于芽诱导,将由 ATCC15834 菌株诱导的发根和未组织化肿瘤置于补充有 0.1、0.25、0.5 和 1mg/l BA 加 0.1mg/l NAA 的 MS 培养基上。在含有 0.25mg/l BA 和 0.1mg/l NAA 的培养基中,获得了高频率的芽再生和芽数量。再生芽的基部在补充有 0.5mg/l IBA 的 MS 培养基上 10 天后开始生根。

相似文献

1
Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi.
Physiol Mol Biol Plants. 2014 Apr;20(2):257-62. doi: 10.1007/s12298-013-0217-z. Epub 2014 Jan 26.
2
A reliable and efficient protocol for inducing genetically transformed roots in medicinal plant Nepeta pogonosperma.
Physiol Mol Biol Plants. 2014 Jul;20(3):351-6. doi: 10.1007/s12298-014-0235-5. Epub 2014 May 25.
3
In vitro regeneration and Agrobacterium mediated genetic transformation of Artemisia aucheri Boiss.
Physiol Mol Biol Plants. 2014 Oct;20(4):487-94. doi: 10.1007/s12298-014-0248-0. Epub 2014 Jun 25.
5
Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare.
Physiol Mol Biol Plants. 2016 Apr;22(2):271-7. doi: 10.1007/s12298-016-0354-2. Epub 2016 Apr 30.
6
Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L.
3 Biotech. 2017 May;7(1):21. doi: 10.1007/s13205-017-0608-x. Epub 2017 Apr 11.
7
Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum.
World J Microbiol Biotechnol. 2013 Mar;29(3):421-30. doi: 10.1007/s11274-012-1194-z. Epub 2012 Oct 23.

引用本文的文献

2
Pharmacophylogenetic relationships of genus and its related genera based on multifaceted analysis.
Front Pharmacol. 2024 Oct 3;15:1449426. doi: 10.3389/fphar.2024.1449426. eCollection 2024.
4
The History of Agrobacterium Rhizogenes: From Pathogen to a Multitasking Platform for Biotechnology.
Methods Mol Biol. 2024;2827:51-69. doi: 10.1007/978-1-0716-3954-2_4.
5
ZnO nanoparticles efficiently enhance drought tolerance in through altering physiological, biochemical and elemental contents.
Front Plant Sci. 2023 Mar 10;14:1063618. doi: 10.3389/fpls.2023.1063618. eCollection 2023.
6
Efficient Generation of CRISPR/Cas9-Mediated Homozygous/Biallelic Mutants Using a Hairy Root System.
Front Plant Sci. 2020 Mar 24;11:294. doi: 10.3389/fpls.2020.00294. eCollection 2020.
7
Hairy root induction and Farnesiferol B production of endemic medicinal plant .
3 Biotech. 2019 Nov;9(11):407. doi: 10.1007/s13205-019-1935-x. Epub 2019 Oct 22.
8
Elimination of macro elements from inoculation and co-cultivation media enhances the efficiency of -mediated transformation in .
Physiol Mol Biol Plants. 2018 Jul;24(4):703-710. doi: 10.1007/s12298-018-0553-0. Epub 2018 May 31.
9
Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of L. elicited by iron oxide nanoparticles.
In Vitro Cell Dev Biol Plant. 2017;53(2):104-111. doi: 10.1007/s11627-017-9802-0. Epub 2017 Feb 27.
10
Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare.
Physiol Mol Biol Plants. 2016 Apr;22(2):271-7. doi: 10.1007/s12298-016-0354-2. Epub 2016 Apr 30.

本文引用的文献

2
Segregation of genes transferred to one plant cell from two separate Agrobacterium strains.
Plant Mol Biol. 1987 Nov;8(6):439-45. doi: 10.1007/BF00017989.
6
Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene.
Biotechnol Lett. 2011 Jun;33(6):1249-55. doi: 10.1007/s10529-011-0550-7. Epub 2011 Feb 2.
8
Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent.
Phytochemistry. 2005 Jul;66(13):1581-92. doi: 10.1016/j.phytochem.2005.04.035.
10
Production of an allelopathic polyacetylene in hairy root cultures of goldenrod (Solidago altissima L.).
Biosci Biotechnol Biochem. 2003 Apr;67(4):863-8. doi: 10.1271/bbb.67.863.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验