Suppr超能文献

缺氧和再氧合通过四氢生物蝶呤耗竭和 S-谷胱甘肽化诱导内皮细胞内皮型一氧化氮合酶解偶联。

Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation.

机构信息

Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States.

出版信息

Biochemistry. 2014 Jun 10;53(22):3679-88. doi: 10.1021/bi500076r. Epub 2014 May 29.

Abstract

Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal restoration of eNOS function and NO generation.

摘要

缺血再灌注损伤伴随着内皮细胞缺氧和再氧合,这会引发氧化应激,导致超氧化物生成增强和一氧化氮(NO)生成减少,从而导致内皮功能障碍。内皮型一氧化氮合酶(eNOS)辅助因子四氢生物蝶呤的氧化耗竭可触发 eNOS 解偶联,其中酶产生超氧化物而不是 NO。最近,还表明氧化应激可以诱导 eNOS 还原酶位点关键半胱氨酸残基的 S-谷胱甘肽化,作为一种氧化还原开关来控制 eNOS 偶联。虽然超氧化物可以耗尽四氢生物蝶呤并诱导 eNOS S-谷胱甘肽化,但在缺氧和再氧合后内皮细胞中 eNOS 功能障碍的发病机制中,这些过程的程度和相互作用尚不清楚。因此,对缺氧和再氧合的内皮细胞进行了研究,以确定 eNOS 解偶联的严重程度以及辅助因子耗竭和 S-谷胱甘肽化在该过程中的作用。主动脉内皮细胞的缺氧和再氧合触发黄嘌呤氧化酶介导的超氧化物生成,导致四氢生物蝶呤耗竭和 S-谷胱甘肽化,从而导致 eNOS 解偶联。在用四氢生物蝶呤补充细胞并增加细胞内谷胱甘肽水平后,大大保存了缺氧和再氧合后的 eNOS 活性,而单独针对任一机制仅部分改善了 NO 的减少。缺氧和再氧合引起的内皮氧化应激使 eNOS 解偶联,氧化型和还原型谷胱甘肽的比值发生改变,导致 eNOS S-谷胱甘肽化。这些由氧化应激引发的机制结合在一起,导致 eNOS 功能障碍,酶从 NO 向超氧化物生成转移。因此,在内皮再灌注损伤中,需要使四氢生物蝶呤水平和谷胱甘肽池正常化,以最大程度地恢复 eNOS 功能和 NO 生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/becc/4053070/cc865933e785/bi-2014-00076r_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验