Suppr超能文献

通过将70基因特征与临床风险预测算法相结合来优化乳腺癌的预后预测。

Optimized outcome prediction in breast cancer by combining the 70-gene signature with clinical risk prediction algorithms.

作者信息

Drukker C A, Nijenhuis M V, Bueno-de-Mesquita J M, Retèl V P, van Harten W H, van Tinteren H, Wesseling J, Schmidt M K, Van't Veer L J, Sonke G S, Rutgers E J T, van de Vijver M J, Linn S C

机构信息

Department of Surgical Oncology, Netherlands Cancer Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands.

出版信息

Breast Cancer Res Treat. 2014 Jun;145(3):697-705. doi: 10.1007/s10549-014-2954-2. Epub 2014 Apr 24.

Abstract

Clinical guidelines for breast cancer treatment differ in their selection of patients at a high risk of recurrence who are eligible to receive adjuvant systemic treatment (AST). The 70-gene signature is a molecular tool to better guide AST decisions. The aim of this study was to evaluate whether adding the 70-gene signature to clinical risk prediction algorithms can optimize outcome prediction and consequently treatment decisions in early stage, node-negative breast cancer patients. A 70-gene signature was available for 427 patients participating in the RASTER study (cT1-3N0M0). Median follow-up was 61.6 months. Based on 5-year distant-recurrence free interval (DRFI) probabilities survival areas under the curve (AUC) were calculated and compared for risk estimations based on the six clinical risk prediction algorithms: Adjuvant! Online (AOL), Nottingham Prognostic Index (NPI), St. Gallen (2003), the Dutch National guidelines (CBO 2004 and NABON 2012), and PREDICT plus. Also, survival AUC were calculated after adding the 70-gene signature to these clinical risk estimations. Systemically untreated patients with a high clinical risk estimation but a low risk 70-gene signature had an excellent 5-year DRFI varying between 97.1 and 100 %, depending on the clinical risk prediction algorithms used in the comparison. The best risk estimation was obtained in this cohort by adding the 70-gene signature to CBO 2012 (AUC: 0.644) and PREDICT (AUC: 0.662). Clinical risk estimations by all clinical algorithms improved by adding the 70-gene signature. Patients with a low risk 70-gene signature have an excellent survival, independent of their clinical risk estimation. Adding the 70-gene signature to clinical risk prediction algorithms improves risk estimations and therefore might improve the identification of early stage node-negative breast cancer patients for whom AST has limited value. In this cohort, the PREDICT plus tool in combination with the 70-gene signature provided the best risk prediction.

摘要

乳腺癌治疗的临床指南在选择有高复发风险且适合接受辅助性全身治疗(AST)的患者方面存在差异。70基因检测是一种分子工具,可更好地指导AST决策。本研究的目的是评估将70基因检测添加到临床风险预测算法中是否能优化早期、淋巴结阴性乳腺癌患者的预后预测,从而优化治疗决策。参与RASTER研究(cT1 - 3N0M0)的427例患者可进行70基因检测。中位随访时间为61.6个月。基于5年无远处复发间期(DRFI)概率,计算并比较了基于六种临床风险预测算法的风险估计的曲线下生存面积(AUC):辅助治疗在线(AOL)、诺丁汉预后指数(NPI)、圣加仑(2003年)、荷兰国家指南(CBO 2004和NABON 2012)以及PREDICT plus。此外,在将70基因检测添加到这些临床风险估计后,计算了生存AUC。临床风险估计高但70基因检测风险低的未接受全身治疗的患者5年DRFI极佳,根据比较中使用的临床风险预测算法,其范围在97.1%至100%之间。在该队列中,将70基因检测添加到CBO 2012(AUC:0.644)和PREDICT(AUC:0.662)中可获得最佳风险估计。添加70基因检测后,所有临床算法的临床风险估计均得到改善。70基因检测风险低的患者生存情况极佳,与他们的临床风险估计无关。将70基因检测添加到临床风险预测算法中可改善风险估计,因此可能有助于更好地识别AST价值有限的早期淋巴结阴性乳腺癌患者。在该队列中,PREDICT plus工具与70基因检测相结合提供了最佳风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b23c/4031388/0996250feb8b/10549_2014_2954_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验