Suppr超能文献

吸附在微悬臂梁上的自组装单分子层的第一性原理表面应力计算和多尺度变形分析

First-principles surface stress calculations and multiscale deformation analysis of a self-assembled monolayer adsorbed on a micro-cantilever.

作者信息

Shih Yu-Ching, Chen Chuin-Shan, Wu Kuang-Chong

机构信息

Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan.

Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Sensors (Basel). 2014 Apr 23;14(4):7435-50. doi: 10.3390/s140407435.

Abstract

Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT) calculations and finite element method (FEM) analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM) on the Au(111) surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.

摘要

微悬臂梁传感器被广泛用于检测生物分子、化学气体和离子种类。然而,这些器件的理论描述和预测模型并未得到充分发展,落后于制造和应用方面的进展。在本文中,我们提出了一种用于纳米机械传感器的新型多尺度模拟框架。该框架结合了密度泛函理论(DFT)计算和有限元方法(FEM)分析,能够从分子尺度到器件尺度分析分子吸附引起的传感器变形和应力场。详细研究了烷硫醇自组装单分子层(SAM)在微悬臂梁传感器金(111)表面的吸附,以证明该框架的适用性。采用DFT计算来研究分子吸附对金表面产生的表面应力。从DFT计算获得的具有初始应力的三维壳单元用作吸附层中的SAM域,同时采用FEM来分析传感器器件的变形和应力。我们发现微悬臂梁尖端挠度与SAM域的覆盖率呈线性关系。在完全覆盖时,尖端挠度随着分子链长度的增加而减小。该多尺度模拟框架提供了对位移和应力场的定量分析,可用于预测纳米机械传感器在复杂分子吸附下的响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验