Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8 (PTM), Tres Cantos, 28760 Madrid, Spain.
Chem Soc Rev. 2013 Feb 7;42(3):1287-311. doi: 10.1039/c2cs35293a.
The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.
微纳加工技术的进步使我们能够制备越来越小的机械换能器,这些换能器能够检测生物分子相互作用和基本生物过程中产生的力、运动、机械性能和质量。因此,基于纳米机械系统的生物传感器在过去十年中得到了相当大的关注。 本综述深入探讨了在其表面发生生物吸附或相互作用时悬浮机械结构中发生的机械现象。 本综述引导读者了解由于生物分子吸附而发生变化的参数:质量、表面应力、有效杨氏模量和粘弹性。 还概述了正确解释纳米机械生物传感器输出信号所需的数学背景。 综述的其他实际问题包括生物分子受体在纳米机械系统表面的固定化以及在大量传感器阵列中实现这一目标的方法。 然后,我们描述了基于纳米机械系统的生物传感器设备的一些相关实现,这些设备利用了上述部分机械效应。 最后,我们讨论了器件的固有检测极限以及非特异性吸附带来的限制。