Suppr超能文献

基于吸附的微悬臂梁生物传感器对辐射暴露效应的多尺度模拟

Multiscale Simulation of Adsorption Based Microcantilever Biosensors for Radiation Exposure Effects.

作者信息

Mollaei Fouad, Aliparast Peiman, Naghash Abolghasem

机构信息

Aerospace Research Institute, Ministry of Science and Research and Technology, Tehran, Iran.

Aerospace Engineering Department, Amirkabir University of Technology, Tehran, Iran.

出版信息

Iran J Biotechnol. 2020 Apr 1;18(2):e2317. doi: 10.30498/IJB.2020.134636.2317. eCollection 2020 Apr.

Abstract

BACKGROUND

This article is focused on biological measurements based on molecular interactions. The specific biomarker implemented for radiation biosensor is FLT3, which bears changes in the body regarding radiation exposure. Experimental results of sensing vancomycin verify the overall results of two steps of numerical methods for different scales.

OBJECTIVES

The aim is to provide adequate modeling procedures to predict sensory data. Multiscale modeling is implemented to simulate molecular interaction and its consequent micro mechanical effects. The method is implemented to calculate surface traction of microcantilever biosensor.

MATERIALS AND METHODS

The method consists of molecular dynamics simulation of adsorption process by implementing classical mechanics theory to calculate the final response of the sensor as tip deflection. The sequential information transaction is assumed between the physical parameters of two governing scales. The numerical method consists of the location of particles providing for a nano-metric periodic boundary conditioned functionalized surface implemented, and the numerical thermodynamic formula is, in turn, use energy parameters to acquire macro-mechanical deflection of a specific microcantilever. Also, novel sensitivity analysis of the results as the adsorption process moves toward more saturated substrate provided.

RESULTS

Verification of the simulation method for Vancomycin sensing results enjoys less than 20 percent of deviation regarding the experimental data. The standard deviation of 0.054 in the final expected response of the sensor is calculated as the accuracy of the radiation biosensor based on FLT3.

CONCLUSIONS

The method is still to reach a correlation between the concentration of target molecules in solution and the number of adsorbed molecules per area of the sensor. A scaled correlation between sensor's response and the amount of biomarker is found using tip deflection of a sample designed microcantilever. Around one micrometer deflection that can be read out using various conventional methods was observed at saturation of adsorption surface. The analyses provide adequate data to design a sensor capable of measuring the effect of cosmic radiation to the human body.

摘要

背景

本文聚焦于基于分子相互作用的生物测量。用于辐射生物传感器的特定生物标志物是FLT3,其在身体中会因辐射暴露而发生变化。感应万古霉素的实验结果验证了不同尺度下数值方法两个步骤的总体结果。

目的

旨在提供适当的建模程序以预测传感数据。实施多尺度建模以模拟分子相互作用及其产生的微机械效应。该方法用于计算微悬臂生物传感器的表面牵引力。

材料与方法

该方法包括通过应用经典力学理论对吸附过程进行分子动力学模拟,以计算传感器的最终响应(即尖端偏转)。假定在两个控制尺度的物理参数之间存在顺序信息传递。数值方法包括确定提供纳米级周期性边界条件功能化表面的粒子位置,进而使用数值热力学公式通过能量参数获取特定微悬臂的宏观机械偏转。此外,还提供了随着吸附过程向更饱和的底物发展时对结果的新颖灵敏度分析。

结果

万古霉素传感结果的模拟方法验证显示,与实验数据的偏差小于20%。计算得出传感器最终预期响应的标准偏差为0.054,作为基于FLT3的辐射生物传感器的精度。

结论

该方法仍需建立溶液中目标分子浓度与传感器每单位面积吸附分子数量之间的相关性。利用设计的微悬臂样品的尖端偏转,发现了传感器响应与生物标志物数量之间的比例相关性。在吸附表面饱和时,观察到约一微米的偏转,可使用各种传统方法读出。这些分析提供了足够的数据来设计一种能够测量宇宙辐射对人体影响的传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0770/7856398/6a410c3e6e48/IJB-18-e2317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验