Suppr超能文献

用于结构和功能研究的蛋白质非酶促Rubylation和泛素化修饰

Nonenzymatic rubylation and ubiquitination of proteins for structural and functional studies.

作者信息

Singh Rajesh K, Sundar Adithya, Fushman David

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-3360 (USA).

出版信息

Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6120-5. doi: 10.1002/anie.201402642. Epub 2014 Apr 24.

Abstract

Uncovering the mechanisms that allow conjugates of ubiquitin (Ub) and/or Ub-like (UBL) proteins such as Rub1 to serve as distinct molecular signals requires the ability to make them with native connectivity and defined length and linkage composition. A novel, effective, and affordable strategy for controlled chemical assembly of fully natural UBL-Ub, Ub-UBL, and UBL-UBL conjugates from recombinant monomers is presented. Rubylation of Ub and Rub1 and ubiquitination of Rub1 was achieved without E2/E3 enzymes. New residue-specific information was obtained on the interdomain contacts in naturally-occurring K48-linked Rub1-Ub and Ub-Rub1, and K29-linked Rub1-Ub heterodimers, and their recognition by a K48-linkage-specific Ub receptor. The disassembly of these heterodimers by major deubiquitinating enzymes was examined and it was discovered that some deubiquitinases also possess derubylase activity. This unexpected result suggests possible crosstalk between Ub and Rub1/Nedd8 signaling pathways.

摘要

揭示泛素(Ub)和/或类泛素(UBL)蛋白(如Rub1)的缀合物作为独特分子信号的机制,需要具备以天然连接性、确定长度和连接组成来合成它们的能力。本文提出了一种新颖、有效且经济的策略,用于从重组单体可控化学组装完全天然的UBL-Ub、Ub-UBL和UBL-UBL缀合物。在没有E2/E3酶的情况下实现了Ub和Rub1的Rubylation以及Rub1的泛素化。获得了关于天然存在的K48连接的Rub1-Ub和Ub-Rub1以及K29连接的Rub1-Ub异二聚体中结构域间接触的新的残基特异性信息,以及它们被K48连接特异性Ub受体识别的信息。研究了主要去泛素化酶对这些异二聚体的拆解,发现一些去泛素酶也具有去Rubylase活性。这一意外结果表明Ub和Rub1/Nedd8信号通路之间可能存在串扰。

相似文献

1
Nonenzymatic rubylation and ubiquitination of proteins for structural and functional studies.
Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6120-5. doi: 10.1002/anie.201402642. Epub 2014 Apr 24.
3
Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system.
Mol Cell Proteomics. 2012 Dec;11(12):1595-611. doi: 10.1074/mcp.M112.022467. Epub 2012 Oct 26.
4
Profiling DUBs and Ubl-specific proteases with activity-based probes.
Methods Enzymol. 2019;618:357-387. doi: 10.1016/bs.mie.2018.12.037. Epub 2019 Feb 14.
5
Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates.
Biochemistry. 2012 May 22;51(20):4175-87. doi: 10.1021/bi300058m. Epub 2012 May 14.
6
Exploring the linkage dependence of polyubiquitin conformations using molecular modeling.
J Mol Biol. 2010 Jan 29;395(4):803-14. doi: 10.1016/j.jmb.2009.10.039. Epub 2009 Oct 22.
7
Mixed-linkage ubiquitin chains send mixed messages.
Structure. 2013 May 7;21(5):727-40. doi: 10.1016/j.str.2013.02.019. Epub 2013 Apr 4.
9
A bioluminescent assay for monitoring conjugation of ubiquitin and ubiquitin-like proteins.
Anal Biochem. 2016 Oct 1;510:41-51. doi: 10.1016/j.ab.2016.06.016. Epub 2016 Jun 17.
10
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
Curr Opin Struct Biol. 2007 Dec;17(6):726-35. doi: 10.1016/j.sbi.2007.08.018. Epub 2007 Oct 4.

引用本文的文献

1
Genetic Code Expansion Approaches to Decipher the Ubiquitin Code.
Chem Rev. 2024 Oct 23;124(20):11544-11584. doi: 10.1021/acs.chemrev.4c00375. Epub 2024 Sep 23.
4
Profiling DUBs and Ubl-specific proteases with activity-based probes.
Methods Enzymol. 2019;618:357-387. doi: 10.1016/bs.mie.2018.12.037. Epub 2019 Feb 14.
5
A Highly Efficient Synthesis of Polyubiquitin Chains.
Adv Sci (Weinh). 2018 May 14;5(7):1800234. doi: 10.1002/advs.201800234. eCollection 2018 Jul.
6
Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1.
Anal Chem. 2017 Aug 1;89(15):7852-7860. doi: 10.1021/acs.analchem.6b04194. Epub 2017 Jul 20.
7
Synthetic and semi-synthetic strategies to study ubiquitin signaling.
Curr Opin Struct Biol. 2016 Jun;38:92-101. doi: 10.1016/j.sbi.2016.05.022. Epub 2016 Jun 15.
8
Chemical ubiquitination for decrypting a cellular code.
Biochem J. 2016 May 15;473(10):1297-314. doi: 10.1042/BJ20151195.
9
Chemical Protein Ubiquitylation with Preservation of the Native Cysteine Residues.
Chembiochem. 2016 Jun 2;17(11):995-8. doi: 10.1002/cbic.201600042. Epub 2016 Apr 26.

本文引用的文献

1
Chemistry and biology of peptides, proteins and beyond.
Bioorg Med Chem. 2013 Jun 15;21(12):3398-9. doi: 10.1016/j.bmc.2013.05.020.
2
Mixed-linkage ubiquitin chains send mixed messages.
Structure. 2013 May 7;21(5):727-40. doi: 10.1016/j.str.2013.02.019. Epub 2013 Apr 4.
3
Nonenzymatic assembly of branched polyubiquitin chains for structural and biochemical studies.
Bioorg Med Chem. 2013 Jun 15;21(12):3421-9. doi: 10.1016/j.bmc.2013.02.052. Epub 2013 Mar 15.
4
Ubiquitin ligases and cell cycle control.
Annu Rev Biochem. 2013;82:387-414. doi: 10.1146/annurev-biochem-060410-105307. Epub 2013 Mar 13.
5
Regulation of DNA damage responses by ubiquitin and SUMO.
Mol Cell. 2013 Mar 7;49(5):795-807. doi: 10.1016/j.molcel.2013.01.017. Epub 2013 Feb 14.
6
Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system.
Mol Cell Proteomics. 2012 Dec;11(12):1595-611. doi: 10.1074/mcp.M112.022467. Epub 2012 Oct 26.
7
Polymerization behavior of a bifunctional ubiquitin monomer as a function of the nucleophile site and folding conditions.
J Am Chem Soc. 2012 Sep 26;134(38):16085-92. doi: 10.1021/ja3078736. Epub 2012 Sep 17.
8
Chemistry and biology of the ubiquitin signal.
Angew Chem Int Ed Engl. 2012 Jul 9;51(28):6840-62. doi: 10.1002/anie.201200020. Epub 2012 Jun 13.
10
The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions.
Cell Cycle. 2012 Mar 15;11(6):1142-50. doi: 10.4161/cc.11.6.19559.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验