From the Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany and.
the Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany and the Department of Mathematics, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany.
J Biol Chem. 2014 Jun 6;289(23):16576-87. doi: 10.1074/jbc.M114.559468. Epub 2014 Apr 24.
The cytokine TNF-related apoptosis-inducing ligand (TRAIL) and its cell membrane receptors constitute an elaborate signaling system fulfilling important functions in immune regulation and tumor surveillance. Activation of the death receptors TRAILR1 and TRAILR2 can lead to apoptosis, whereas TRAILR3 and TRAILR4 are generally referred to as decoy receptors, which have been shown to inhibit TRAIL-induced apoptosis. The underlying molecular mechanisms, however, remain unclear. Alike other members of the TNF receptor superfamily, TRAIL receptors contain a pre-ligand binding assembly domain (PLAD) mediating receptor oligomerization. Still, the stoichiometry of TRAIL receptor oligomers as well as the issue of whether the PLAD mediates only homotypic or also heterotypic interactions remained inconclusive until now. Performing acceptor-photobleaching FRET studies with receptors 1, 2, and 4, we demonstrate interactions in all possible combinations. Formation of dimers was shown by chemical cross-linking experiments for interactions of TRAILR2 and heterophilic interactions between the two death receptors or between either of the death receptors and TRAILR4. Implications of the demonstrated receptor-receptor interactions on signaling were investigated in suitable cellular models. Both apoptosis induction and activation of the transcription factor NFκB were significantly reduced in the presence of TRAILR4. Our experimental data combined with mathematical modeling show that the inhibitory capacity of TRAILR4 is attributable to signaling-independent mechanisms, strongly suggesting a reduction of signaling competent death receptors through formation heteromeric receptor complexes. In summary, we propose a model of TRAIL receptor interference driven by PLAD-mediated formation of receptor heterodimers on the cell membrane.
细胞因子 TNF 相关凋亡诱导配体(TRAIL)及其细胞膜受体构成了一个精细的信号系统,在免疫调节和肿瘤监测中发挥着重要作用。激活死亡受体 TRAILR1 和 TRAILR2 可导致细胞凋亡,而 TRAILR3 和 TRAILR4 通常被称为诱饵受体,它们被证明可以抑制 TRAIL 诱导的细胞凋亡。然而,其潜在的分子机制尚不清楚。与 TNF 受体超家族的其他成员一样,TRAIL 受体包含一个预配体结合组装域(PLAD),介导受体寡聚化。然而,TRAIL 受体寡聚体的化学计量以及 PLAD 是否仅介导同型或异型相互作用,直到现在仍然没有定论。通过对受体 1、2 和 4 进行受体接受光漂白荧光共振能量转移(FRET)研究,我们证明了所有可能的组合中的相互作用。化学交联实验表明,TRAILR2 之间以及两种死亡受体之间或任何一种死亡受体与 TRAILR4 之间存在二聚体形成。在合适的细胞模型中,研究了所证明的受体-受体相互作用对信号转导的影响。TRAILR4 的存在显著降低了凋亡诱导和转录因子 NFκB 的激活。我们的实验数据结合数学建模表明,TRAILR4 的抑制能力归因于信号非依赖性机制,强烈表明通过形成异源受体复合物,降低了信号有效的死亡受体。总之,我们提出了一种模型,即由细胞膜上 PLAD 介导的受体异二聚体形成驱动的 TRAIL 受体干扰。