Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
J Bacteriol. 2014 Jul;196(13):2481-90. doi: 10.1128/JB.01725-14. Epub 2014 Apr 25.
SpoIIIE/FtsK ATPases are central players in bacterial chromosome segregation. It remains unclear how these DNA translocases harness chemical energy (ATP turnover) to perform mechanical work (DNA movement). Bacillus subtilis sporulation provides a dramatic example of intercompartmental DNA transport, in which SpoIIIE moves 70% of the chromosome across the division plane. To understand the mechanistic requirements for DNA translocation, we investigated the DNA translocation defect of a classical nontranslocating allele, spoIIIE36. We found that the translocation phenotype is caused by a single substitution, a change of valine to methionine at position 429 (V429M), within the motor of SpoIIIE. This substitution is located at the base of a hinge between the RecA-like β domain and the α domain, which is a domain unique to the SpoIIIE/FtsK family and currently has no known function. V429M interferes with both protein-DNA interactions and oligomer assembly. These mechanistic defects disrupt coordination between ATP turnover and DNA interaction, effectively uncoupling ATP hydrolysis from DNA movement. Our data provide the first functional evidence for the importance of the hinge in DNA translocation.
SpoIIIE/FtsK ATPases 是细菌染色体分离的核心参与者。这些 DNA 转位酶如何利用化学能量(ATP 周转)来进行机械工作(DNA 运动)仍不清楚。枯草芽孢杆菌孢子形成提供了一个隔间间 DNA 运输的显著例子,其中 SpoIIIE 将 70%的染色体穿过分裂平面。为了了解 DNA 易位的机械要求,我们研究了经典非易位等位基因 spoIIIE36 的 DNA 易位缺陷。我们发现易位表型是由单个取代引起的,即在 SpoIIIE 马达中的第 429 位(V429M)从缬氨酸变为蛋氨酸。该取代位于 RecA 样β结构域和α结构域之间的铰链的底部,该铰链是 SpoIIIE/FtsK 家族特有的结构域,目前尚无已知功能。V429M 干扰了蛋白质-DNA 相互作用和寡聚体组装。这些机制缺陷破坏了 ATP 周转和 DNA 相互作用之间的协调,有效地将 ATP 水解与 DNA 运动解耦。我们的数据为铰链在 DNA 易位中的重要性提供了第一个功能证据。