Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET), University of La Plata (UNLP), Calle 59 No 789 (1900), La Plata, Argentina.
Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden (TUD), Nöthnitzerstr 46, 01069, Dresden, Germany.
Sci Rep. 2018 Mar 27;8(1):5254. doi: 10.1038/s41598-018-23400-8.
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
细胞货物的分子马达运输需要方向性以确保正常的生物学功能。在枯草芽孢杆菌的孢子形成过程中,染色体运输的方向性是通过膜结合的 DNA 转位酶 SpoIIIE 与特定的八聚体序列(SRS)之间的相互作用来介导的。SRS 是通过招募和定向 SpoIIIE 还是通过简单地催化其转位活性来调节方向性仍不清楚。通过原子力显微镜和单轮快速动力学转位测定,我们确定了有或没有 SRS 时扩散和转位的 SpoIIIE 复合物在 DNA 上的定位和动力学。我们的研究结果与数学建模相结合表明,SpoIIIE 的方向性不是通过 SRS 招募来调节的,而是通过控制 SpoIIIE-DNA 相互作用的速率和 SRS 调节的起始转位概率之间的精细平衡来调节的。此外,我们发现 SpoIIIE 可以从非特异性 DNA 起始转位,为 SRS 所在的位置提供了一种替代的主动搜索机制,该位置超出了由 1D 扩散定义的探索长度。这些发现与通过开放通道进行染色体运输的体内情况有关,在这种情况下,SpoIIIE 可以在与 SRS 而非非特异性 DNA 相互作用时调节转位起始的概率的情况下,快速探索 DNA。