Coletta D J, Lozano D, Rocha-Oliveira A A, Mortarino P, Bumaguin G E, Vitelli E, Vena R, Missana L, Jammal M V, Portal-Núñez S, Pereira M, Esbrit P, Feldman S
Laboratorio de Biología Osteoarticular, Ingeniería Tisular y Terapias Emergentes (LABOATEM), Facultad de Ciencias Médicas de la Universidad Nacional de Rosario, Rosario, Argentina.
Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, and Red Temática de Investigación Cooperativa de Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Madrid, Spain.
Open Biomed Eng J. 2014 Mar 7;8:20-7. doi: 10.2174/1874120701408010020. eCollection 2014.
Hybrid foam (BG-PVA) with 50 % Bioactive glass (BG) and 50 % polyvinyl alcohol (PVA) was prepared by sol-gel process to produce scaffolds for bone tissue engineering. The pore structure of hydrated foams was evaluated by 3-D confocal microscopy, confirming 70% porosity and interconnected macroporous network. In this study, we assessed the putative advantage of coating with osteostatin pentapeptide into BG-PVA hybrid scaffolds to improve their bioactivity. In vitro cell culture experiments were performed using mouse pre-osteoblastic MC3T3-E1 cell line. The exposure to osteostatin loaded-BG-PVA scaffolds increase cell proliferation in contrast with the unloaded scaffolds. An in vivo study was selected to implant BG-PVA scaffolds, non-coated (Group A) or coated (Group B) with osteostatin into non critical bone defect at rabbit femur. Both groups showed new compact bone formation on implant surface, with lamellae disposed around a haversian canal forming osteons-like structure. We observed signs of inflammation around the implanted unloaded scaffold at one month, but resolved at 3 months. This early inflammation did not occur in Group B; supporting the notion that osteostatin may act as anti-inflammatory inhibitor. On the other hand, Group B showed increased bone formation, as depicted by many new trabeculae partly mineralized in the implant regenerating area, incipient at 1 month and more evident at 3 months after implantation. PVA/BG hybrid scaffolds present a porous structure suitable to support osteoblast proliferation and differentiation. Our in vitro and in vivo findings indicate that osteostatin coating improves the osteogenic features of these scaffolds.
采用溶胶-凝胶法制备了含有50%生物活性玻璃(BG)和50%聚乙烯醇(PVA)的混合泡沫(BG-PVA),以生产用于骨组织工程的支架。通过三维共聚焦显微镜评估了水合泡沫的孔隙结构,证实孔隙率为70%且具有相互连接的大孔网络。在本研究中,我们评估了在BG-PVA混合支架上涂覆骨抑素五肽以提高其生物活性的潜在优势。使用小鼠前成骨细胞MC3T3-E1细胞系进行了体外细胞培养实验。与未负载的支架相比,暴露于负载骨抑素的BG-PVA支架可增加细胞增殖。选择进行一项体内研究,将未涂覆(A组)或涂覆有骨抑素(B组)的BG-PVA支架植入兔股骨的非关键性骨缺损处。两组在植入物表面均显示出新的致密骨形成,薄片围绕哈弗斯管排列形成类骨单位结构。我们在1个月时观察到植入的未负载支架周围有炎症迹象,但在3个月时消退。这种早期炎症在B组中未出现;这支持了骨抑素可能作为抗炎抑制剂的观点。另一方面,B组显示出骨形成增加,如在植入物再生区域有许多部分矿化的新小梁所示,植入后1个月开始出现,3个月时更明显。PVA/BG混合支架呈现出适合支持成骨细胞增殖和分化的多孔结构。我们的体外和体内研究结果表明,骨抑素涂层改善了这些支架的成骨特性。