Suppr超能文献

骨抑素增强了含 Zn 离子的中孔玻璃支架在人骨髓间充质干细胞中的生物活性。

Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn ions in human mesenchymal stem cells.

机构信息

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre,i+12, 28040 Madrid, Spain.

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre,i+12, 28040 Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.

出版信息

Acta Biomater. 2019 Apr 15;89:359-371. doi: 10.1016/j.actbio.2019.03.033. Epub 2019 Mar 16.

Abstract

There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteostatin and Zn ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. The MBG compositions investigated were 80%SiO-15%CaO-5%PO (in mol-%) Blank (BL), and two analogous glasses containing 4% ZnO (4ZN) and 5% ZnO (5ZN). By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores (around 4 nm), macropores (1-600 μm) and big channels (∼1000 μm), were prepared. These MBG scaffolds with or without osteostatin were evaluated in hMCSs cultures. Zinc promoted hMSCs colonization (both the surface and inside) of MBG scaffolds. Moreover, Zn ions and osteostatin together, but not independently, in the scaffolds were found to induce the osteoblast differentiation genes runt related transcription factor-2 (RUNX2) and alkaline phosphatase (ALP) in hMSCs after 7 d of culture in the absence of an osteogenic differentiation-promoting medium. These results add credence to the combined use of zinc and osteostatin as an effective strategy for bone regeneration applications. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glasses (MBGs) are bioceramics whose unique properties make them excellent materials for bone tissue engineering. Physico-chemical characterization of MBGs as scaffolds made by rapid prototyping, doped with zinc (potential osteogenic, angiogenic and bactericidal ion) and loaded with osteostatin (osteogenic peptide) are described. These Zn-MBGs scaffolds showed 3D hierarchical meso-macroporous structure that enables to host and release osteostatin. When decorated with human mesenchymal stem cells (hMSCs), MBGs scaffoldsenriched with both zinc and osteostatin exhibited a synergistic effect to enhance hMSCs growth, and also hMSCs osteogenic differentiationwithout addition of other osteoblastic differentiation factors to the culture medium. This novel strategy has a great potential for use in bone tissue engineering.

摘要

目前急需具有增强成骨能力的生物合成骨移植物。在本研究中,我们描述了基于中孔生物活性玻璃(MBG)设计的分级中-大孔 3D 支架,该支架富含肽骨抑素和 Zn 离子,并将其作为骨再生的临床前策略用于人骨髓间充质干细胞(hMSCs)的成骨作用。所研究的 MBG 组成是 80%SiO-15%CaO-5%PO(摩尔%)空白(BL)和两种类似的含有 4%ZnO(4ZN)和 5%ZnO(5ZN)的玻璃。通过使用添加剂制造技术,制备了具有分级孔隙率的支架:中孔(约 4nm)、大孔(1-600μm)和大通道(约 1000μm)。在 hMCSs 培养物中评估了具有或不具有骨抑素的这些 MBG 支架。锌促进 hMSCs 定殖(支架的表面和内部)。此外,在不存在促进成骨分化的培养基的情况下,在培养 7d 后,发现支架中的 Zn 离子和骨抑素共同但不单独诱导 hMSCs 中的成骨分化基因 runt 相关转录因子-2(RUNX2)和碱性磷酸酶(ALP)。这些结果为锌和骨抑素联合使用作为骨再生应用的有效策略提供了依据。 意义声明:中孔生物活性玻璃(MBG)是一种生物陶瓷,其独特的性质使其成为骨组织工程的绝佳材料。描述了通过快速原型制作,掺杂锌(潜在的成骨,血管生成和杀菌离子)并负载骨抑素(成骨肽)制成的 MBG 支架的物理化学特性。这些 Zn-MBG 支架具有 3D 分级中-大孔结构,能够容纳和释放骨抑素。当用人类间充质干细胞(hMSCs)装饰时,富含锌和骨抑素的 MBG 支架表现出协同作用,可增强 hMSCs 的生长,并且无需向培养基中添加其他成骨分化因子即可增强 hMSCs 的成骨分化。这种新策略在骨组织工程中有很大的应用潜力。

相似文献

1
Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn ions in human mesenchymal stem cells.
Acta Biomater. 2019 Apr 15;89:359-371. doi: 10.1016/j.actbio.2019.03.033. Epub 2019 Mar 16.
2
Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin.
Nanomaterials (Basel). 2018 Aug 4;8(8):592. doi: 10.3390/nano8080592.
4
Enriched mesoporous bioactive glass scaffolds as bone substitutes in critical diaphyseal bone defects in rabbits.
Acta Biomater. 2024 May;180:104-114. doi: 10.1016/j.actbio.2024.04.005. Epub 2024 Apr 5.
6
Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles.
Acta Biomater. 2023 Jan 1;155:654-666. doi: 10.1016/j.actbio.2022.10.045. Epub 2022 Nov 1.
7
Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
Int J Nanomedicine. 2011;6:2521-31. doi: 10.2147/IJN.S25647. Epub 2011 Oct 21.
8
Multifunctional antibiotic- and zinc-containing mesoporous bioactive glass scaffolds to fight bone infection.
Acta Biomater. 2020 Sep 15;114:395-406. doi: 10.1016/j.actbio.2020.07.044. Epub 2020 Jul 24.
10
Osteogenic-angiogenic coupled response of cobalt-containing mesoporous bioactive glasses in vivo.
Acta Biomater. 2024 Mar 1;176:445-457. doi: 10.1016/j.actbio.2024.01.003. Epub 2024 Jan 6.

引用本文的文献

3
Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications.
Bioact Mater. 2024 Jan 12;34:436-462. doi: 10.1016/j.bioactmat.2024.01.001. eCollection 2024 Apr.
4
Pleiotrophin-Loaded Mesoporous Silica Nanoparticles as a Possible Treatment for Osteoporosis.
Pharmaceutics. 2023 Feb 16;15(2):658. doi: 10.3390/pharmaceutics15020658.
5
Delivery of Therapeutic Biopolymers Employing Silica-Based Nanosystems.
Pharmaceutics. 2023 Jan 20;15(2):351. doi: 10.3390/pharmaceutics15020351.
6
Achievements in Mesoporous Bioactive Glasses for Biomedical Applications.
Pharmaceutics. 2022 Nov 29;14(12):2636. doi: 10.3390/pharmaceutics14122636.
8
Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?
Chem Soc Rev. 2022 Jul 4;51(13):5365-5451. doi: 10.1039/d1cs00659b.
9
Double-edged effects and mechanisms of Zn microenvironments on osteogenic activity of BMSCs: osteogenic differentiation or apoptosis.
RSC Adv. 2020 Apr 15;10(25):14915-14927. doi: 10.1039/d0ra01465f. eCollection 2020 Apr 8.
10
Cu-Doped Hollow Bioactive Glass Nanoparticles for Bone Infection Treatment.
Pharmaceutics. 2022 Apr 12;14(4):845. doi: 10.3390/pharmaceutics14040845.

本文引用的文献

1
A tissue engineering approach based on the use of bioceramics for bone repair.
Biomater Sci. 2013 Jan 30;1(1):40-51. doi: 10.1039/c2bm00071g. Epub 2012 Oct 1.
2
In vitro antibacterial capacity and cytocompatibility of SiO-CaO-PO meso-macroporous glass scaffolds enriched with ZnO.
J Mater Chem B. 2014 Aug 14;2(30):4836-4847. doi: 10.1039/c4tb00403e. Epub 2014 Jun 25.
3
Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin.
Nanomaterials (Basel). 2018 Aug 4;8(8):592. doi: 10.3390/nano8080592.
4
Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications.
Mater Sci Eng C Mater Biol Appl. 2018 Feb 1;83:99-107. doi: 10.1016/j.msec.2017.11.003. Epub 2017 Nov 10.
6
Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing.
J Colloid Interface Sci. 2018 Jan 1;509:275-284. doi: 10.1016/j.jcis.2017.08.092. Epub 2017 Sep 1.
8
Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.
Acta Biomater. 2017 Feb;49:590-603. doi: 10.1016/j.actbio.2016.11.067. Epub 2016 Nov 30.
9
Physicochemical and functional properties of gelatin extracted from Yak skin.
Int J Biol Macromol. 2017 Feb;95:1246-1253. doi: 10.1016/j.ijbiomac.2016.11.020. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验