Zhu Suwei, Segura Tatiana
Chemical & Biomolecular Engineering Department, University of California Los Angeles, 420 Westwood Plaza, 5532-C Boelter Hall, Los Angeles, CA 90095, USA.
Curr Opin Chem Eng. 2014 May 1;4:128-136. doi: 10.1016/j.coche.2013.12.009.
The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.
设计具有细胞指导作用的人工细胞外基质作为支架的能力,为能够在体外研究细胞命运并指导组织修复的技术打开了大门。人工细胞外基质设计的一个主要组成部分是纳入基于蛋白质的生化线索,以指导细胞表型和多细胞组织。然而,促进长期生物活性、控制生物利用度以及理解这些蛋白质的物理呈现如何影响细胞命运,是该领域面临的挑战之一。纳米技术已经取得进展以应对蛋白质治疗的挑战。例如,将蛋白质纳入组织修复支架的方法从大量包封到智能纳米储库,后者可保护蛋白质不被降解并提供可控释放的机会。