文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

树枝状大分子:探索其广泛的结构多样性及应用

Dendrimers: Exploring Their Wide Structural Variety and Applications.

作者信息

Pérez-Ferreiro María, M Abelairas Adrián, Criado Alejandro, Gómez I Jénnifer, Mosquera Jesús

机构信息

CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa as Carballeiras, 15071 A Coruña, Spain.

出版信息

Polymers (Basel). 2023 Nov 9;15(22):4369. doi: 10.3390/polym15224369.


DOI:10.3390/polym15224369
PMID:38006093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10674315/
Abstract

Dendrimers constitute a distinctive category of synthetic materials that bear resemblance to proteins in various aspects, such as discrete structural organization, globular morphology, and nanoscale dimensions. Remarkably, these attributes coexist with the capacity for facile large-scale production. Due to these advantages, the realm of dendrimers has undergone substantial advancement since their inception in the 1980s. Numerous reviews have been dedicated to elucidating this subject comprehensively, delving into the properties and applications of quintessential dendrimer varieties like PAMAM, PPI, and others. Nevertheless, the contemporary landscape of dendrimers transcends these early paradigms, witnessing the emergence of a diverse array of novel dendritic architectures in recent years. In this review, we aim to present a comprehensive panorama of the expansive domain of dendrimers. As such, our focus lies in discussing the key attributes and applications of the predominant types of dendrimers existing today. We will commence with the conventional variants and progressively delve into the more pioneering ones, including Janus, supramolecular, shape-persistent, and rotaxane dendrimers.

摘要

树枝状大分子是一类独特的合成材料,在各个方面与蛋白质相似,例如离散的结构组织、球状形态和纳米级尺寸。值得注意的是,这些特性与大规模生产的便利性并存。由于这些优势,自20世纪80年代诞生以来,树枝状大分子领域取得了长足的进步。许多综述致力于全面阐明这一主题,深入探讨典型树枝状大分子品种(如PAMAM、PPI等)的性质和应用。然而,树枝状大分子的当代格局超越了这些早期范式,近年来出现了各种各样新颖的树枝状结构。在这篇综述中,我们旨在全面呈现树枝状大分子广阔领域的全景。因此,我们的重点在于讨论当今存在的主要类型树枝状大分子的关键特性和应用。我们将从传统变体开始,逐步深入探讨更具开创性的类型,包括Janus树枝状大分子、超分子树枝状大分子、形状持久树枝状大分子和轮烷树枝状大分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/94f0dd339f43/polymers-15-04369-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/b642515ae9a7/polymers-15-04369-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/c7fd097fd7ff/polymers-15-04369-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/efaa2ed2ca8f/polymers-15-04369-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/938a8ca18ff5/polymers-15-04369-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/f425addd4d2f/polymers-15-04369-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/b5440241e679/polymers-15-04369-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/2c5a0cf363dc/polymers-15-04369-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/f0b310e0ab85/polymers-15-04369-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/6954503b64a2/polymers-15-04369-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/5f631ec7d65d/polymers-15-04369-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/94f0dd339f43/polymers-15-04369-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/b642515ae9a7/polymers-15-04369-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/c7fd097fd7ff/polymers-15-04369-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/efaa2ed2ca8f/polymers-15-04369-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/938a8ca18ff5/polymers-15-04369-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/f425addd4d2f/polymers-15-04369-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/b5440241e679/polymers-15-04369-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/2c5a0cf363dc/polymers-15-04369-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/f0b310e0ab85/polymers-15-04369-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/6954503b64a2/polymers-15-04369-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/5f631ec7d65d/polymers-15-04369-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe7/10674315/94f0dd339f43/polymers-15-04369-g011.jpg

相似文献

[1]
Dendrimers: Exploring Their Wide Structural Variety and Applications.

Polymers (Basel). 2023-11-9

[2]
Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers.

Acc Chem Res. 2020-12-15

[3]
Rotaxane Dendrimers: Alliance between Giants.

Acc Chem Res. 2021-11-2

[4]
Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review.

Pharmaceutics. 2023-2-9

[5]
Supramolecular dendritic polymers: from synthesis to applications.

Acc Chem Res. 2014-4-29

[6]
Ga tagged dendrimers for molecular tumor imaging in animals.

Hell J Nucl Med. 2019

[7]
Shape-Persistent Dendrimers.

Molecules. 2023-7-20

[8]
Inorganic nanoparticle-cored dendrimers for biomedical applications: A review.

Heliyon. 2024-4-16

[9]
Cationic PAMAM dendrimers disrupt key platelet functions.

Mol Pharm. 2012-5-4

[10]
Rotaxane dendrimers.

Top Curr Chem. 2003

引用本文的文献

[1]
Recent advances in tumor targeted polymeric nanoparticles for HNC treatment: Enhancing therapeutic efficacy via engineered and biocompatible drug delivery systems.

J Oral Biol Craniofac Res. 2025

[2]
Polymeric and Polymer-Functionalized Drug Delivery Vectors: From Molecular Architecture and Elasticity to Cellular Uptake.

Polymers (Basel). 2025-8-19

[3]
Targeted therapy for knee osteoarthritis: From basic to clinics.

Medicine (Baltimore). 2025-8-15

[4]
From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications.

Pharmaceutics. 2025-7-18

[5]
Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy.

Drug Deliv Transl Res. 2025-6-14

[6]
Nanoparticle Therapeutics in Clinical Perspective: Classification, Marketed Products, and Regulatory Landscape.

Small. 2025-6-2

[7]
The role of nanomedicine and artificial intelligence in cancer health care: individual applications and emerging integrations-a narrative review.

Discov Oncol. 2025-5-8

[8]
Immunomodulatory nanoplatforms with multiple mechanisms of action in cancer treatment.

Nanomedicine (Lond). 2025-6

[9]
Light-driven self-sterilizing cotton fabric and drug delivery: improvement of the antimicrobial activity of 4-sulfo-1,8-naphthalimide via its dendrimer and metallic dendrimer formation.

Photochem Photobiol Sci. 2025-4

[10]
Branched Polymer Architecture for Modulating Interactions in Material-Bio Interface.

Tissue Eng Regen Med. 2025-3-8

本文引用的文献

[1]
Multisite Inclusion Complexation of Redox Active Dendrimer Guests.

J Am Chem Soc. 1997-6-18

[2]
Hapten/Myristoyl Functionalized Poly(propyleneimine) Dendrimers as Potent Cell Surface Recruiters of Antibodies for Mediating Innate Immune Killing.

Adv Mater. 2023-11

[3]
Shape-Persistent Dendrimers.

Molecules. 2023-7-20

[4]
From sandwich complexes to dendrimers: journey toward applications to sensing, molecular electronics, materials science, and biomedicine.

Chem Commun (Camb). 2023-6-13

[5]
Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers.

Polymers (Basel). 2023-4-9

[6]
A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy.

Acta Biomater. 2023-7-1

[7]
Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review.

Pharmaceutics. 2023-2-9

[8]
Functional supramolecular gels based on poly(benzyl ether) dendrons and dendrimers.

Chem Commun (Camb). 2022-8-4

[9]
Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: and Approaches.

Biomacromolecules. 2022-7-11

[10]
Dynamic Glycopeptide Dendrimers: Synthesis and Their Controllable Self-Assembly into Varied Glyco-Nanostructures for the Biomimicry of Glycans.

Biomacromolecules. 2022-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索