From the Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.L., E.T., V.L.D., D.D., A.S., T.P.A., B.O.'R.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (S.K., G.S.).
Circ Res. 2014 Jun 20;115(1):44-54. doi: 10.1161/CIRCRESAHA.115.303062. Epub 2014 Apr 29.
In cardiomyocytes from failing hearts, insufficient mitochondrial Ca(2+) accumulation secondary to cytoplasmic Na(+) overload decreases NAD(P)H/NAD(P)(+) redox potential and increases oxidative stress when workload increases. These effects are abolished by enhancing mitochondrial Ca(2+) with acute treatment with CGP-37157 (CGP), an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger.
Our aim was to determine whether chronic CGP treatment mitigates contractile dysfunction and arrhythmias in an animal model of heart failure (HF) and sudden cardiac death (SCD).
Here, we describe a novel guinea pig HF/SCD model using aortic constriction combined with daily β-adrenergic receptor stimulation (ACi) and show that chronic CGP treatment (ACi plus CGP) attenuates cardiac hypertrophic remodeling, pulmonary edema, and interstitial fibrosis and prevents cardiac dysfunction and SCD. In the ACi group 4 weeks after pressure overload, fractional shortening and the rate of left ventricular pressure development decreased by 36% and 32%, respectively, compared with sham-operated controls; in contrast, cardiac function was completely preserved in the ACi plus CGP group. CGP treatment also significantly reduced the incidence of premature ventricular beats and prevented fatal episodes of ventricular fibrillation, but did not prevent QT prolongation. Without CGP treatment, mortality was 61% in the ACi group <4 weeks of aortic constriction, whereas the death rate in the ACi plus CGP group was not different from sham-operated animals.
The findings demonstrate the critical role played by altered mitochondrial Ca(2+) dynamics in the development of HF and HF-associated SCD; moreover, they reveal a novel strategy for treating SCD and cardiac decompensation in HF.
在衰竭心脏的心肌细胞中,由于细胞质钠过载导致的线粒体钙(Ca(2+))积累不足会降低 NAD(P)H/NAD(P)(+)氧化还原电势,并在工作量增加时增加氧化应激。这些效应可以通过用 CGP-37157(CGP)急性处理来增强线粒体 Ca(2+)而被消除,CGP 是一种线粒体 Na(+)/Ca(2+)交换器抑制剂。
我们的目的是确定慢性 CGP 治疗是否可以减轻心力衰竭(HF)和心脏性猝死(SCD)动物模型中的收缩功能障碍和心律失常。
在这里,我们描述了一种使用主动脉缩窄结合每日β-肾上腺素能受体刺激(ACi)的新型豚鼠 HF/SCD 模型,并表明慢性 CGP 治疗(ACi 加 CGP)可减轻心脏肥厚重塑、肺水肿和间质纤维化,并预防心脏功能障碍和 SCD。在压力超负荷 4 周后,ACi 组的分数缩短和左心室压力发展率分别降低了 36%和 32%,与假手术对照组相比;相比之下,ACi 加 CGP 组的心脏功能完全保留。CGP 治疗还显著降低了室性早搏的发生率,并预防了致命的心室颤动发作,但没有预防 QT 延长。没有 CGP 治疗,ACi 组在主动脉缩窄 <4 周时的死亡率为 61%,而 ACi 加 CGP 组的死亡率与假手术组无差异。
这些发现表明,改变的线粒体 Ca(2+)动力学在 HF 发展和 HF 相关 SCD 中起着关键作用;此外,它们揭示了一种治疗 SCD 和 HF 心脏失代偿的新策略。