Suppr超能文献

采用阻断和随机化方法以改进分子生物标志物的发现。

Blocking and randomization to improve molecular biomarker discovery.

作者信息

Qin Li-Xuan, Zhou Qin, Bogomolniy Faina, Villafania Liliana, Olvera Narciso, Cavatore Magali, Satagopan Jaya M, Begg Colin B, Levine Douglas A

机构信息

Authors' Affiliations: Departments of Epidemiology and Biostatistics and

Authors' Affiliations: Departments of Epidemiology and Biostatistics and.

出版信息

Clin Cancer Res. 2014 Jul 1;20(13):3371-8. doi: 10.1158/1078-0432.CCR-13-3155. Epub 2014 May 1.

Abstract

Randomization and blocking have the potential to prevent the negative impacts of nonbiologic effects on molecular biomarker discovery. Their use in practice, however, has been scarce. To demonstrate the logistic feasibility and scientific benefits of randomization and blocking, we conducted a microRNA study of endometrial tumors (n = 96) and ovarian tumors (n = 96) using a blocked randomization design to control for nonbiologic effects; we profiled the same set of tumors for a second time using no blocking or randomization. We assessed empirical evidence of differential expression in the two studies. We performed simulations through virtual rehybridizations to further evaluate the effects of blocking and randomization. There was moderate and asymmetric differential expression (351/3,523, 10%) between endometrial and ovarian tumors in the randomized dataset. Nonbiologic effects were observed in the nonrandomized dataset, and 1,934 markers (55%) were called differentially expressed. Among them, 185 were deemed differentially expressed (185/351, 53%) and 1,749 not differentially expressed (1,749/3,172, 55%) in the randomized dataset. In simulations, when randomization was applied to all samples at once or within batches of samples balanced in tumor groups, blocking improved the true-positive rate from 0.95 to 0.97 and the false-positive rate from 0.02 to 0.002; when sample batches were unbalanced, randomization was associated with the true-positive rate (0.92) and the false-positive rate (0.10) regardless of blocking. Normalization improved the detection of true-positive markers but still retained sizeable false-positive markers. Randomization and blocking should be used in practice to more fully reap the benefits of genomics technologies.

摘要

随机化和区组设计有潜力防止非生物学效应对分子生物标志物发现产生负面影响。然而,它们在实际应用中却很少见。为了证明随机化和区组设计在逻辑上的可行性和科学益处,我们对96例子宫内膜肿瘤和96例卵巢肿瘤进行了一项微小RNA研究,采用区组随机化设计来控制非生物学效应;我们对同一组肿瘤再次进行分析,这次未采用区组设计或随机化。我们评估了两项研究中差异表达的实证证据。我们通过虚拟再杂交进行模拟,以进一步评估区组设计和随机化的效果。在随机化数据集中,子宫内膜肿瘤和卵巢肿瘤之间存在中度且不对称的差异表达(351/3523,10%)。在非随机化数据集中观察到了非生物学效应,有1934个标志物(55%)被判定为差异表达。其中,在随机化数据集中,有185个被认为是差异表达的(185/351,53%),1749个不是差异表达的(1749/3172,55%)。在模拟中,当一次性对所有样本或在肿瘤组平衡的样本批次内应用随机化时,区组设计将真阳性率从0.95提高到0.97,将假阳性率从0.02降低到0.002;当样本批次不平衡时,无论是否采用区组设计,随机化都与真阳性率(0.92)和假阳性率(0.10)相关。标准化提高了真阳性标志物的检测率,但仍保留了大量假阳性标志物。在实际应用中应使用随机化和区组设计,以便更充分地获得基因组技术的益处。

相似文献

1
Blocking and randomization to improve molecular biomarker discovery.
Clin Cancer Res. 2014 Jul 1;20(13):3371-8. doi: 10.1158/1078-0432.CCR-13-3155. Epub 2014 May 1.
3
MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.
PLoS One. 2014 Jun 6;9(6):e98879. doi: 10.1371/journal.pone.0098879. eCollection 2014.
6
Mutually distinguishing microRNA signatures of breast, ovarian and endometrial cancers in vitro.
Mol Med Rep. 2020 Nov;22(5):4048-4060. doi: 10.3892/mmr.2020.11466. Epub 2020 Aug 27.
7
Expression of microRNA-145, OCT4, and SOX2 in double primary endometrioid endometrial and ovarian carcinomas.
Histol Histopathol. 2018 Aug;33(8):859-870. doi: 10.14670/HH-11-986. Epub 2018 Mar 23.
8
Ovarian Cancer: Differentially Expressed microRNAs in Tumor Tissue and Cell-Free Ascitic Fluid as Potential Novel Biomarkers.
Cancer Invest. 2019;37(9):440-452. doi: 10.1080/07357907.2019.1663208. Epub 2019 Sep 18.

引用本文的文献

1
How thoughtful experimental design can empower biologists in the omics era.
Nat Commun. 2025 Aug 6;16(1):7263. doi: 10.1038/s41467-025-62616-x.
3
BatMan: Mitigating Batch Effects Via Stratification for Survival Outcome Prediction.
JCO Clin Cancer Inform. 2023 Jun;7:e2200138. doi: 10.1200/CCI.22.00138.
4
On data normalization and batch-effect correction for tumor subtyping with microRNA data.
NAR Genom Bioinform. 2023 Jan 10;5(1):lqac100. doi: 10.1093/nargab/lqac100. eCollection 2023 Mar.
5
: An R Package for Benchmarking microRNA Array Data Normalization in the Context of Sample Classification.
Front Genet. 2022 Jul 22;13:838679. doi: 10.3389/fgene.2022.838679. eCollection 2022.
6
Making External Validation Valid for Molecular Classifier Development.
JCO Precis Oncol. 2021 Aug 5;5. doi: 10.1200/PO.21.00103. eCollection 2021 Aug.
7
Performance evaluation of transcriptomics data normalization for survival risk prediction.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab257.
8
Biomarker Discovery and Validation: Statistical Considerations.
J Thorac Oncol. 2021 Apr;16(4):537-545. doi: 10.1016/j.jtho.2021.01.1616. Epub 2021 Feb 2.
9
Statistical Assessment of Depth Normalization for Small RNA Sequencing.
JCO Clin Cancer Inform. 2020 Jun;4:567-582. doi: 10.1200/CCI.19.00118.
10
Can Peripheral Blood-Derived Gene Expressions Characterize Individuals at Ultra-high Risk for Psychosis?
Comput Psychiatr. 2017 Dec 1;1:168-183. doi: 10.1162/CPSY_a_00007. eCollection 2017 Dec.

本文引用的文献

1
Impact of bioinformatic procedures in the development and translation of high-throughput molecular classifiers in oncology.
Clin Cancer Res. 2013 Aug 15;19(16):4315-25. doi: 10.1158/1078-0432.CCR-12-3937. Epub 2013 Jun 18.
4
International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.
Database (Oxford). 2011 Sep 19;2011:bar026. doi: 10.1093/database/bar026. Print 2011.
5
miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222.
Oncogene. 2012 Feb 2;31(5):634-42. doi: 10.1038/onc.2011.260. Epub 2011 Jun 27.
6
MicroRNA control of ovarian function.
Anim Reprod. 2010 Jul 1;7(3):129-133.
7
Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway.
Nat Cell Biol. 2011 Jun;13(6):693-9. doi: 10.1038/ncb2241. Epub 2011 May 22.
8
Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation.
Oncogene. 2011 May 12;30(19):2242-51. doi: 10.1038/onc.2010.602. Epub 2011 Jan 17.
9
Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells.
Cancer Res. 2010 Nov 15;70(22):9175-84. doi: 10.1158/0008-5472.CAN-10-1318. Epub 2010 Oct 26.
10
Cancer biomarkers: can we turn recent failures into success?
J Natl Cancer Inst. 2010 Oct 6;102(19):1462-7. doi: 10.1093/jnci/djq306. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验