Sage Bionetworks, Seattle, WA 98109, USA.
Clin Cancer Res. 2013 Aug 15;19(16):4315-25. doi: 10.1158/1078-0432.CCR-12-3937. Epub 2013 Jun 18.
The progressive introduction of high-throughput molecular techniques in the clinic allows for the extensive and systematic exploration of multiple biologic layers of tumors. Molecular profiles and classifiers generated from these assays represent the foundation of what the National Academy describes as the future of "precision medicine". However, the analysis of such complex data requires the implementation of sophisticated bioinformatic and statistical procedures. It is critical that oncology practitioners be aware of the advantages and limitations of the methods used to generate classifiers to usher them into the clinic. This article uses publicly available expression data from patients with non-small cell lung cancer to first illustrate the challenges of experimental design and preprocessing of data before clinical application and highlights the challenges of high-dimensional statistical analysis. It provides a roadmap for the translation of such classifiers to clinical practice and makes key recommendations for good practice.
高通量分子技术在临床上的逐步引入,使得对肿瘤的多个生物学层面进行广泛而系统的探索成为可能。这些检测产生的分子谱和分类器代表了国家科学院所描述的“精准医学”未来的基础。然而,对这些复杂数据的分析需要实施复杂的生物信息学和统计程序。至关重要的是,肿瘤学从业者应该了解用于生成分类器的方法的优缺点,以便将其引入临床。本文使用非小细胞肺癌患者的公开可用表达数据,首先说明在临床应用之前进行实验设计和数据预处理的挑战,并强调高维统计分析的挑战。它为将这些分类器转化为临床实践提供了路线图,并为良好实践提出了关键建议。