Suppr超能文献

通过文本挖掘进行系统性药物再利用。

Systematic drug repurposing through text mining.

作者信息

Tari Luis B, Patel Jagruti H

机构信息

Knowledge Discovery Lab, Software Science and Analytics, GE Global Research, 1 Research Circle, Niskayuna, NY, 12309, USA,

出版信息

Methods Mol Biol. 2014;1159:253-67. doi: 10.1007/978-1-4939-0709-0_14.

Abstract

Drug development remains a time-consuming and highly expensive process with high attrition rates at each stage. Given the safety hurdles drugs must pass due to increased regulatory scrutiny, it is essential for pharmaceutical companies to maximize their return on investment by effectively extending drug life cycles. There have been many effective techniques, such as phenotypic screening and compound profiling, which identify new indications for existing drugs, often referred to as drug repurposing or drug repositioning. This chapter explores the use of text mining leveraging several publicly available knowledge resources and mechanism of action representations to link existing drugs to new diseases from biomedical abstracts in an attempt to generate biologically meaningful alternative drug indications.

摘要

药物研发仍然是一个耗时且成本高昂的过程,每个阶段的淘汰率都很高。鉴于监管审查的加强,药物必须跨越安全障碍,制药公司通过有效延长药物生命周期来最大化投资回报率至关重要。已经有许多有效技术,如表型筛选和化合物剖析,可识别现有药物的新适应症,通常称为药物再利用或药物重新定位。本章探讨利用几种公开可用的知识资源和作用机制表示进行文本挖掘,以便从生物医学摘要中将现有药物与新疾病联系起来,从而尝试生成具有生物学意义的替代药物适应症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验