Suppr超能文献

根据目击记录量化灭绝概率:推断与不确定性

Quantifying extinction probabilities from sighting records: inference and uncertainties.

作者信息

Caley Peter, Barry Simon C

机构信息

Commonwealth Scientific and Industrial Research Organisation Division of Computational Informatics, Canberra, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship, Brisbane, Australia.

出版信息

PLoS One. 2014 Apr 30;9(4):e95857. doi: 10.1371/journal.pone.0095857. eCollection 2014.

Abstract

Methods are needed to estimate the probability that a population is extinct, whether to underpin decisions regarding the continuation of a invasive species eradication program, or to decide whether further searches for a rare and endangered species could be warranted. Current models for inferring extinction probability based on sighting data typically assume a constant or declining sighting rate. We develop methods to analyse these models in a Bayesian framework to estimate detection and survival probabilities of a population conditional on sighting data. We note, however, that the assumption of a constant or declining sighting rate may be hard to justify, especially for incursions of invasive species with potentially positive population growth rates. We therefore explored introducing additional process complexity via density-dependent survival and detection probabilities, with population density no longer constrained to be constant or decreasing. These models were applied to sparse carcass discoveries associated with the recent incursion of the European red fox (Vulpes vulpes) into Tasmania, Australia. While a simple model provided apparently precise estimates of parameters and extinction probability, estimates arising from the more complex model were much more uncertain, with the sparse data unable to clearly resolve the underlying population processes. The outcome of this analysis was a much higher possibility of population persistence. We conclude that if it is safe to assume detection and survival parameters are constant, then existing models can be readily applied to sighting data to estimate extinction probability. If not, methods reliant on these simple assumptions are likely overstating their accuracy, and their use to underpin decision-making potentially fraught. Instead, researchers will need to more carefully specify priors about possible population processes.

摘要

需要一些方法来估计一个种群灭绝的概率,这无论是为了支持有关入侵物种根除计划是否继续进行的决策,还是为了决定是否有必要进一步搜寻珍稀濒危物种。目前基于目击数据推断灭绝概率的模型通常假设目击率恒定或下降。我们开发了一些方法,在贝叶斯框架下分析这些模型,以根据目击数据估计种群的检测和生存概率。然而,我们注意到,目击率恒定或下降的假设可能很难成立,特别是对于那些具有潜在正种群增长率的入侵物种的入侵情况。因此,我们探索通过依赖密度的生存和检测概率引入额外的过程复杂性,此时种群密度不再局限于恒定或下降。这些模型被应用于与欧洲赤狐(Vulpes vulpes)最近入侵澳大利亚塔斯马尼亚岛相关的稀少尸体发现情况。虽然一个简单模型给出了显然精确的参数估计和灭绝概率,但更复杂模型得出的估计则更加不确定,稀疏的数据无法清晰地解析潜在的种群过程。该分析的结果是种群持续存在的可能性要高得多。我们得出结论,如果可以安全地假设检测和生存参数是恒定的,那么现有模型可以很容易地应用于目击数据以估计灭绝概率。如果不是这样,依赖这些简单假设的方法可能高估了它们的准确性,并且用它们来支持决策制定可能充满问题。相反,研究人员将需要更仔细地指定关于可能的种群过程的先验信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60fd/4005750/e7b438e959ca/pone.0095857.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验