Suppr超能文献

宽 stance 行走过程中的身体稳定性以及肌肉和运动皮层活动。 注:这里“stance”可能有误,推测可能是“stance”的错误输入,正确的可能是“stance”,意为“姿势、站姿” ,如果是“wide stance”准确意思是“宽站姿” 。 完整准确译文:宽站姿行走过程中的身体稳定性以及肌肉和运动皮层活动。

Body stability and muscle and motor cortex activity during walking with wide stance.

作者信息

Farrell Brad J, Bulgakova Margarita A, Beloozerova Irina N, Sirota Mikhail G, Prilutsky Boris I

机构信息

School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia; and.

School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia; and Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.

出版信息

J Neurophysiol. 2014 Aug 1;112(3):504-24. doi: 10.1152/jn.00064.2014. Epub 2014 Apr 30.

Abstract

Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion.

摘要

行走过程中平衡控制的生物力学和神经机制仍未得到充分理解。在本研究中,我们检测了猫在自由行走和采用宽支撑面行走(宽 stance 行走)时的身体动态稳定性、肢体肌肉活动以及运动皮层神经元(主要是锥体束神经元,PTNs)的活动。通过记录三维全身运动学,我们首次发现,在自由行走过程中,当只有两条对角肢体支撑身体时,猫在步幅阶段向前方向上是动态不稳定的。与站立不同,行走过程中爪间横向距离增加会显著降低猫在双支撑阶段的身体动态稳定性,并促使猫在三足支撑阶段花费更多时间。参与外展 - 内收动作的肌肉在站立期活动较高,而在宽 stance 行走的摆动期屈肌活动较高。运动皮层 V 层中的绝大多数神经元,在前肢和后肢代表区分别为 82%和 83%,与自由行走状态相比,在宽 stance 行走时活动有所不同,最常见的是具有不同的步幅相关频率调制深度以及不同的平均放电率和/或偏好活动相位。从自由行走过渡到宽 stance 行走时,近端肢体相关神经元组的活动微妙但在统计学上有显著意义地向摆动期转移,摆动期是此任务中身体大部分不稳定发生的步幅阶段。数据表明运动皮层参与了运动过程中身体动态稳定性的维持。

相似文献

1
Body stability and muscle and motor cortex activity during walking with wide stance.
J Neurophysiol. 2014 Aug 1;112(3):504-24. doi: 10.1152/jn.00064.2014. Epub 2014 Apr 30.
2
Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.
J Neurophysiol. 2015 Nov;114(5):2682-702. doi: 10.1152/jn.00510.2014. Epub 2015 Sep 9.
3
Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.
J Neurophysiol. 2010 Apr;103(4):2285-300. doi: 10.1152/jn.00360.2009. Epub 2010 Feb 17.
6
Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
J Neurophysiol. 1996 Feb;75(2):832-42. doi: 10.1152/jn.1996.75.2.832.
7
Attributes of quiet stance in the chronic spinal cat.
J Neurophysiol. 1999 Dec;82(6):3056-65. doi: 10.1152/jn.1999.82.6.3056.
9
Maintenance of lateral stability during standing and walking in the cat.
J Neurophysiol. 2009 Jan;101(1):8-19. doi: 10.1152/jn.90934.2008. Epub 2008 Nov 12.
10
Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.
J Neurophysiol. 2005 Oct;94(4):2959-69. doi: 10.1152/jn.00704.2004. Epub 2005 May 11.

引用本文的文献

1
Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat.
J Physiol. 2025 Jan;603(2):447-487. doi: 10.1113/JP287448. Epub 2024 Dec 20.
2
ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT.
bioRxiv. 2024 Jul 16:2024.07.11.603106. doi: 10.1101/2024.07.11.603106.
3
Activity of cat premotor cortex neurons during visually guided stepping.
J Neurophysiol. 2023 Oct 1;130(4):838-860. doi: 10.1152/jn.00114.2023. Epub 2023 Aug 23.
4
Neuromechanical Strategies for Obstacle Negotiation during Overground Locomotion following Incomplete Spinal Cord Injury in Adult Cats.
J Neurosci. 2023 Aug 2;43(31):5623-5641. doi: 10.1523/JNEUROSCI.0478-23.2023. Epub 2023 Jul 20.
7
Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats.
J Neurophysiol. 2022 Dec 1;128(6):1593-1616. doi: 10.1152/jn.00230.2022. Epub 2022 Nov 16.
9
Competing Models of Work in Quadrupedal Walking: Center of Mass Work is Insufficient to Explain Stereotypical Gait.
Front Bioeng Biotechnol. 2022 May 12;10:826336. doi: 10.3389/fbioe.2022.826336. eCollection 2022.

本文引用的文献

1
Effect of light on the activity of motor cortex neurons during locomotion.
Behav Brain Res. 2013 Aug 1;250:238-50. doi: 10.1016/j.bbr.2013.05.004. Epub 2013 May 13.
2
Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract.
J Physiol. 2013 Nov 15;591(22):5433-43. doi: 10.1113/jphysiol.2012.249110. Epub 2013 Apr 22.
3
Differential responses of fast- and slow-conducting pyramidal tract neurons to changes in accuracy demands during locomotion.
J Physiol. 2013 May 15;591(10):2647-66. doi: 10.1113/jphysiol.2012.232538. Epub 2013 Feb 4.
4
Effects of ankle extensor muscle afferent inputs on hip abductor and adductor activity in the decerebrate walking cat.
J Neurophysiol. 2012 Dec;108(11):3034-42. doi: 10.1152/jn.00013.2012. Epub 2012 Sep 12.
6
Voluntary changes in step width and step length during human walking affect dynamic margins of stability.
Gait Posture. 2012 Jun;36(2):219-24. doi: 10.1016/j.gaitpost.2012.02.020. Epub 2012 Apr 1.
7
Physiological and circuit mechanisms of postural control.
Curr Opin Neurobiol. 2012 Aug;22(4):646-52. doi: 10.1016/j.conb.2012.03.002. Epub 2012 Mar 23.
8
Dynamic margins of stability during human walking in destabilizing environments.
J Biomech. 2012 Apr 5;45(6):1053-9. doi: 10.1016/j.jbiomech.2011.12.027. Epub 2012 Feb 9.
9
Pyramidal tract neurons receptive to different forelimb joints act differently during locomotion.
J Neurophysiol. 2012 Apr;107(7):1890-903. doi: 10.1152/jn.00650.2011. Epub 2012 Jan 11.
10
Somatosensory control of balance during locomotion in decerebrated cat.
J Neurophysiol. 2012 Apr;107(8):2072-82. doi: 10.1152/jn.00730.2011. Epub 2012 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验