Suppr超能文献

猫在站立和行走过程中的侧向稳定性维持。

Maintenance of lateral stability during standing and walking in the cat.

作者信息

Karayannidou A, Zelenin P V, Orlovsky G N, Sirota M G, Beloozerova I N, Deliagina T G

机构信息

Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden.

出版信息

J Neurophysiol. 2009 Jan;101(1):8-19. doi: 10.1152/jn.90934.2008. Epub 2008 Nov 12.

Abstract

During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).

摘要

在自由行为过程中,动物经常会受到侧向力的作用,比如与障碍物碰撞或与其他动物互动。我们研究了猫在站立和行走时对侧向力脉冲(推搡)的姿势反应。站立时,施加于髋部区域的一次推搡会导致尾干侧向偏移,随后回到初始位置。纠正性后肢肌电图(EMG)模式包括在与推搡对侧的后肢大多数伸肌中出现初始兴奋波,以及同侧肢体伸肌受到抑制。在仅以后肢在跑步机上行走的猫中,施加力也会导致尾干侧向偏移,随后回到初始位置。纠正性运动的类型取决于相对于步周期的脉冲时机。如果在其中一条肢体的站立期结束时或其摆动期施加力,该肢体的摆动轨迹会出现侧向分量。纠正性步幅要么向内(当纠正性肢体与施力同侧时),要么向外(当它与施力对侧时)。纠正性肢体的EMG模式的特征是在受干扰的步幅中髋外展肌和内收肌活动有相当大的改变。因此,这两种行为形式中平衡控制的基本机制是不同的。它们在站立时在对称肢体之间重新分配肌肉活动,并在纠正性侧向步幅过程中(行走时)重新配置支撑基础。

相似文献

1
Maintenance of lateral stability during standing and walking in the cat.
J Neurophysiol. 2009 Jan;101(1):8-19. doi: 10.1152/jn.90934.2008. Epub 2008 Nov 12.
2
Attributes of quiet stance in the chronic spinal cat.
J Neurophysiol. 1999 Dec;82(6):3056-65. doi: 10.1152/jn.1999.82.6.3056.
3
Weight support and balance during perturbed stance in the chronic spinal cat.
J Neurophysiol. 1999 Dec;82(6):3066-81. doi: 10.1152/jn.1999.82.6.3066.
4
Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
J Neurophysiol. 1996 Feb;75(2):832-42. doi: 10.1152/jn.1996.75.2.832.
5
Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
J Neurophysiol. 2006 Oct;96(4):1816-28. doi: 10.1152/jn.00370.2006. Epub 2006 Jul 5.
6
Body stability and muscle and motor cortex activity during walking with wide stance.
J Neurophysiol. 2014 Aug 1;112(3):504-24. doi: 10.1152/jn.00064.2014. Epub 2014 Apr 30.
8
Limb and trunk mechanisms for balance control during locomotion in quadrupeds.
J Neurosci. 2014 Apr 16;34(16):5704-16. doi: 10.1523/JNEUROSCI.4663-13.2014.
10
[Neuronal control of posture and locomotion in decerebrated and spinalized animals].
Ross Fiziol Zh Im I M Sechenova. 2013 Mar;99(3):392-405.

引用本文的文献

1
Role of CaMKIIa reticular neurons of caudal medulla in control of posture.
bioRxiv. 2025 Mar 17:2025.03.17.643745. doi: 10.1101/2025.03.17.643745.
2
Neural dynamics of robust legged robots.
Front Robot AI. 2024 Apr 18;11:1324404. doi: 10.3389/frobt.2024.1324404. eCollection 2024.
3
Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion.
Biomedicines. 2023 Jul 11;11(7):1958. doi: 10.3390/biomedicines11071958.
4
Asymmetry measures for quantification of mechanisms contributing to dynamic stability during stepping-in-place gait.
Front Neurol. 2023 Apr 20;14:1145283. doi: 10.3389/fneur.2023.1145283. eCollection 2023.
5
Static posturography as a novel measure of the effects of aging on postural control in dogs.
PLoS One. 2022 Jul 8;17(7):e0268390. doi: 10.1371/journal.pone.0268390. eCollection 2022.
6
Activity of Spinal Interneurons during Forward and Backward Locomotion.
J Neurosci. 2022 Apr 27;42(17):3570-3586. doi: 10.1523/JNEUROSCI.1884-21.2022. Epub 2022 Mar 16.
9
Mapping of the Spinal Sensorimotor Network by Transvertebral and Transcutaneous Spinal Cord Stimulation.
Front Syst Neurosci. 2020 Oct 9;14:555593. doi: 10.3389/fnsys.2020.555593. eCollection 2020.
10
Nervous mechanisms of locomotion in different directions.
Curr Opin Physiol. 2019 Apr;8:7-13. doi: 10.1016/j.cophys.2018.11.010. Epub 2018 Dec 3.

本文引用的文献

1
Postural performance in decerebrated rabbit.
Behav Brain Res. 2008 Jun 26;190(1):124-34. doi: 10.1016/j.bbr.2008.02.011. Epub 2008 Feb 16.
2
Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
J Neurophysiol. 2006 Oct;96(4):1816-28. doi: 10.1152/jn.00370.2006. Epub 2006 Jul 5.
3
Neural bases of postural control.
Physiology (Bethesda). 2006 Jun;21:216-25. doi: 10.1152/physiol.00001.2006.
4
Interlimb postural coordination in the standing cat.
J Physiol. 2006 May 15;573(Pt 1):211-24. doi: 10.1113/jphysiol.2006.104893. Epub 2006 Mar 9.
5
Impairment and recovery of postural control in rabbits with spinal cord lesions.
J Neurophysiol. 2005 Dec;94(6):3677-90. doi: 10.1152/jn.00538.2005. Epub 2005 Jul 27.
6
Activity of pyramidal tract neurons in the cat during postural corrections.
J Neurophysiol. 2005 Apr;93(4):1831-44. doi: 10.1152/jn.00577.2004. Epub 2004 Nov 3.
7
Recovery from perturbations during paced walking.
Gait Posture. 2004 Feb;19(1):24-34. doi: 10.1016/s0966-6362(03)00008-0.
8
Postural control in the rabbit maintaining balance on the tilting platform.
J Neurophysiol. 2003 Dec;90(6):3783-93. doi: 10.1152/jn.00590.2003. Epub 2003 Aug 20.
10
Age-related differences in laterally directed compensatory stepping behavior.
J Gerontol A Biol Sci Med Sci. 2000 May;55(5):M270-7. doi: 10.1093/gerona/55.5.m270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验