Suppr超能文献

脉冲神经元抑制主导网络中方向选择性的平均场分析

Mean-field analysis of orientation selectivity in inhibition-dominated networks of spiking neurons.

作者信息

Sadeh Sadra, Cardanobile Stefano, Rotter Stefan

机构信息

Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany.

出版信息

Springerplus. 2014 Mar 19;3:148. doi: 10.1186/2193-1801-3-148. eCollection 2014.

Abstract

Mechanisms underlying the emergence of orientation selectivity in the primary visual cortex are highly debated. Here we study the contribution of inhibition-dominated random recurrent networks to orientation selectivity, and more generally to sensory processing. By simulating and analyzing large-scale networks of spiking neurons, we investigate tuning amplification and contrast invariance of orientation selectivity in these networks. In particular, we show how selective attenuation of the common mode and amplification of the modulation component take place in these networks. Selective attenuation of the baseline, which is governed by the exceptional eigenvalue of the connectivity matrix, removes the unspecific, redundant signal component and ensures the invariance of selectivity across different contrasts. Selective amplification of modulation, which is governed by the operating regime of the network and depends on the strength of coupling, amplifies the informative signal component and thus increases the signal-to-noise ratio. Here, we perform a mean-field analysis which accounts for this process.

摘要

初级视觉皮层中方向选择性出现的潜在机制备受争议。在此,我们研究抑制主导的随机循环网络对方向选择性的贡献,更广泛地说,是对感觉处理的贡献。通过模拟和分析大规模的脉冲神经元网络,我们研究这些网络中方向选择性的调谐放大和对比度不变性。特别是,我们展示了这些网络中共同模式的选择性衰减和调制成分的放大是如何发生的。由连接矩阵的特殊特征值控制的基线选择性衰减,去除了非特异性的冗余信号成分,并确保了不同对比度下选择性的不变性。由网络的运行状态控制并取决于耦合强度的调制选择性放大,放大了信息信号成分,从而提高了信噪比。在此,我们进行了一项考虑此过程的平均场分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48c/4003001/fc9ed5478670/40064_2014_908_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验