Darmstadt University of Technology, Radiation Biology and DNA Repair, 64287 Darmstadt, Germany.
Darmstadt University of Technology, Developmental Biology and Neurogenetics, 64287 Darmstadt, Germany.
Curr Biol. 2014 May 19;24(10):1080-90. doi: 10.1016/j.cub.2014.03.061. Epub 2014 May 1.
DNA double-strand break (DSB) repair is crucial for the maintenance of genomic stability, and chromatin organization represents one important factor influencing repair efficiency. Mouse rod photoreceptors with their inverted heterochromatin organization containing a single large chromocenter in the middle of the nucleus provide a unique model system to study DSB repair in heterochromatin of living animals.
We observed that adult rod photoreceptors repair only half of the induced DSBs within 1 day after damage induction, a defect that is neither observed in any other cell type of the adult retina nor in rod photoreceptor precursor cells of postnatal day 4 mice. We show that adult wild-type rods are deficient in a repair pathway involving ATM, a protein that promotes heterochromatic DSB repair by phosphorylating KAP1 and facilitating heterochromatin relaxation. Of note, we observed that rods fail to robustly accumulate active ATM at DSBs, exhibit low KAP1 levels, and display high levels of SPOC1, a factor suppressing KAP1 phosphorylation. Collectively, this results in dramatically reduced KAP1 phosphorylation and the inability to repair heterochromatic DSBs.
Because the distinct heterochromatic structure of rods focuses transmitting light to enable vision at low photon levels, the inability to phosphorylate KAP1 and the failure to relax heterochromatin could serve to maintain this structure and the functionality of rods in the presence of DSBs. Collectively, our findings show that the unique chromatin organization of adult rods renders them incapable to efficiently repair heterochromatic DSBs, providing evidence that heterochromatin affects mammalian DSB repair in vivo.
DNA 双链断裂(DSB)修复对于维持基因组稳定性至关重要,而染色质组织代表影响修复效率的一个重要因素。具有倒置异染色质组织的小鼠杆状光感受器,其中核中间有一个单一的大染色中心,为研究活动物异染色质中的 DSB 修复提供了一个独特的模型系统。
我们观察到成年杆状光感受器在损伤诱导后 1 天内仅修复诱导的 DSB 的一半,这一缺陷在成年视网膜的任何其他细胞类型中均未观察到,也未在出生后第 4 天的杆状光感受器前体细胞中观察到。我们表明,成年野生型杆状光感受器在涉及 ATM 的修复途径中存在缺陷,ATM 蛋白通过磷酸化 KAP1 并促进异染色质松弛来促进异染色质 DSB 修复。值得注意的是,我们观察到杆状光感受器不能在 DSB 处有效地积累活跃的 ATM,表现出低水平的 KAP1,并显示高水平的 SPOC1,这是一种抑制 KAP1 磷酸化的因子。总的来说,这导致 KAP1 磷酸化显著减少,无法修复异染色质 DSB。
由于杆状光感受器的独特异染色质结构专注于将光传输到低光子水平以实现视觉,因此无法磷酸化 KAP1 和不能使异染色质松弛可能有助于在存在 DSB 的情况下维持这种结构和杆状光感受器的功能。总的来说,我们的研究结果表明,成年杆状光感受器独特的染色质组织使它们无法有效地修复异染色质 DSB,为异染色质影响哺乳动物体内 DSB 修复提供了证据。