Murphy Michael V, Du Dongyi Tony, Hua Wei, Cortez Karoll J, Butler Melissa G, Davis Robert L, DeCoster Thomas, Johnson Laura, Li Lingling, Nakasato Cynthia, Nordin James D, Ramesh Mayur, Schum Michael, Von Worley Ann, Zinderman Craig, Platt Richard, Klompas Michael
Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts.
Infect Control Hosp Epidemiol. 2014 Jun;35(6):652-9. doi: 10.1086/676430. Epub 2014 Apr 22.
To explore the feasibility of identifying anterior cruciate ligament (ACL) allograft implantations and infections using claims.
Retrospective cohort study.
We identified ACL reconstructions using procedure codes at 6 health plans from 2000 to 2008. We then identified potential infections using claims-based indicators of infection, including diagnoses, procedures, antibiotic dispensings, specialty consultations, emergency department visits, and hospitalizations. Patients' medical records were reviewed to determine graft type, validate infection status, and calculate sensitivity and positive predictive value (PPV) for indicators of ACL allografts and infections.
A total of 11,778 patients with codes for ACL reconstruction were identified. After chart review, PPV for ACL reconstruction was 96% (95% confidence interval [CI], 94%-97%). Of the confirmed ACL reconstructions, 39% (95% CI, 35%-42%) used allograft tissues. The deep infection rate after ACL reconstruction was 1.0% (95% CI, 0.7%-1.4%). The odds ratio of infection for allografts versus autografts was 0.41 (95% CI, 0.19-0.78). Sensitivity of individual claims-based indicators for deep infection after ACL reconstruction ranged from 0% to 75% and PPV from 0% to 100%. Claims-based infection indicators could be combined to enhance sensitivity or PPV but not both.
While claims data accurately identify ACL reconstructions, they poorly distinguish between allografts and autografts and identify infections with variable accuracy. Claims data could be useful to monitor infection trends after ACL reconstruction, with different algorithms optimized for different surveillance goals.
探讨利用索赔数据识别前交叉韧带(ACL)同种异体移植植入及感染情况的可行性。
回顾性队列研究。
我们利用2000年至2008年6个健康计划中的手术编码识别ACL重建手术。然后,我们利用基于索赔的感染指标识别潜在感染,这些指标包括诊断、手术、抗生素配药、专科会诊、急诊科就诊及住院情况。查阅患者病历以确定移植物类型、验证感染状态,并计算ACL同种异体移植及感染指标的敏感性和阳性预测值(PPV)。
共识别出11778例有ACL重建编码的患者。经病历审查,ACL重建的PPV为96%(95%置信区间[CI],94%-97%)。在确诊的ACL重建手术中,39%(95%CI,35%-42%)使用了同种异体组织。ACL重建后的深部感染率为1.0%(95%CI,0.7%-1.4%)。同种异体移植与自体移植相比的感染优势比为0.41(95%CI,0.19-0.78)。ACL重建后基于个体索赔指标的深部感染敏感性范围为0%至75%,PPV范围为0%至100%。基于索赔的感染指标可合并以提高敏感性或PPV,但不能同时提高两者。
虽然索赔数据能准确识别ACL重建手术,但在区分同种异体移植和自体移植方面效果不佳,且识别感染的准确性不一。索赔数据对于监测ACL重建后的感染趋势可能有用,针对不同监测目标可优化不同算法。