Suppr超能文献

用于监测医疗保健相关感染的行政数据的准确性:一项系统评价。

Accuracy of administrative data for surveillance of healthcare-associated infections: a systematic review.

作者信息

van Mourik Maaike S M, van Duijn Pleun Joppe, Moons Karel G M, Bonten Marc J M, Lee Grace M

机构信息

Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

BMJ Open. 2015 Aug 27;5(8):e008424. doi: 10.1136/bmjopen-2015-008424.

Abstract

OBJECTIVE

Measuring the incidence of healthcare-associated infections (HAI) is of increasing importance in current healthcare delivery systems. Administrative data algorithms, including (combinations of) diagnosis codes, are commonly used to determine the occurrence of HAI, either to support within-hospital surveillance programmes or as free-standing quality indicators. We conducted a systematic review evaluating the diagnostic accuracy of administrative data for the detection of HAI.

METHODS

Systematic search of Medline, Embase, CINAHL and Cochrane for relevant studies (1995-2013). Methodological quality assessment was performed using QUADAS-2 criteria; diagnostic accuracy estimates were stratified by HAI type and key study characteristics.

RESULTS

57 studies were included, the majority aiming to detect surgical site or bloodstream infections. Study designs were very diverse regarding the specification of their administrative data algorithm (code selections, follow-up) and definitions of HAI presence. One-third of studies had important methodological limitations including differential or incomplete HAI ascertainment or lack of blinding of assessors. Observed sensitivity and positive predictive values of administrative data algorithms for HAI detection were very heterogeneous and generally modest at best, both for within-hospital algorithms and for formal quality indicators; accuracy was particularly poor for the identification of device-associated HAI such as central line associated bloodstream infections. The large heterogeneity in study designs across the included studies precluded formal calculation of summary diagnostic accuracy estimates in most instances.

CONCLUSIONS

Administrative data had limited and highly variable accuracy for the detection of HAI, and their judicious use for internal surveillance efforts and external quality assessment is recommended. If hospitals and policymakers choose to rely on administrative data for HAI surveillance, continued improvements to existing algorithms and their robust validation are imperative.

摘要

目的

在当前的医疗服务体系中,衡量医疗保健相关感染(HAI)的发生率变得越来越重要。行政数据算法,包括诊断代码(组合),通常用于确定HAI的发生情况,以支持医院内部监测计划或作为独立的质量指标。我们进行了一项系统评价,以评估行政数据检测HAI的诊断准确性。

方法

系统检索Medline、Embase、CINAHL和Cochrane数据库中相关研究(1995 - 2013年)。使用QUADAS - 2标准进行方法学质量评估;诊断准确性估计按HAI类型和关键研究特征进行分层。

结果

纳入57项研究,大多数旨在检测手术部位感染或血流感染。在行政数据算法的规范(代码选择、随访)和HAI存在的定义方面,研究设计差异很大。三分之一的研究存在重要的方法学局限性,包括HAI确定存在差异或不完整,或评估者缺乏盲法。观察到的行政数据算法检测HAI的敏感性和阳性预测值非常异质,对于医院内部算法和正式质量指标而言,总体上充其量也只是中等;对于识别与设备相关的HAI,如中心静脉导管相关血流感染,准确性尤其差。纳入研究的研究设计存在很大异质性,在大多数情况下无法正式计算汇总诊断准确性估计值。

结论

行政数据检测HAI的准确性有限且高度可变,建议谨慎使用行政数据进行内部监测和外部质量评估。如果医院和政策制定者选择依靠行政数据进行HAI监测,必须持续改进现有算法并进行有力验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71b3/4554897/e96f167b6fbd/bmjopen2015008424f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验