Suppr超能文献

哺乳动物线粒体核糖体小亚基的冷冻电镜结构。

Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.

机构信息

Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201;

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;

出版信息

Proc Natl Acad Sci U S A. 2014 May 20;111(20):7284-9. doi: 10.1073/pnas.1401657111. Epub 2014 May 5.

Abstract

The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges.

摘要

哺乳动物的线粒体核糖体(mitoribosomes)负责合成 13 种膜蛋白,这些蛋白构成了参与氧化磷酸化或 ATP 生成的复合物的必需组成部分,这些复合物对于真核细胞至关重要。哺乳动物的 55S 线粒体核糖体包含明显更小的 rRNA 和大量的线粒体核糖体蛋白(MRPs),包括在 MRPs 中具有大型线粒体特异性氨基酸延伸和插入的大型细菌核糖体蛋白同源物,以及另外 35 个线粒体特异性 MRPs。在这里,我们展示了 55S 线粒体核糖体小(28S)亚基(SSU)的 cryo-EM 结构分析结果。我们发现,同源 MRPs 中的线粒体特异性延伸通常参与 MRP 之间的相互作用以及与线粒体特异性 MRPs 的相互作用,这表明了当前线粒体核糖体结构的逐步进化。尽管大多数线粒体特异性 MRPs 和同源 MRPs 的延伸位于外周区域,但它们也对 mRNA 和 tRNA 路径的衬里形成有重要贡献,这表明了为招募大多数不具有 5' 前导序列的线粒体特异性 mRNA,线粒体 SSU 具有定制的结构组织。此外,将先前发表的大(39S)亚基(LSU)的坐标对接入 55S 线粒体核糖体的 cryo-EM 图谱中,揭示了 SSU 和 LSU 的线粒体特异性 MRPs 都直接参与了 15 个亚基间桥中的六个的形成。

相似文献

1
Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7284-9. doi: 10.1073/pnas.1401657111. Epub 2014 May 5.
3
Structural insights into unique features of the human mitochondrial ribosome recycling.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8283-8288. doi: 10.1073/pnas.1815675116. Epub 2019 Apr 8.
4
Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.
Science. 2015 Apr 17;348(6232):303-8. doi: 10.1126/science.aaa3872. Epub 2015 Apr 2.
5
Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease.
Gene. 2002 Mar 6;286(1):73-9. doi: 10.1016/s0378-1119(01)00808-3.
6
Structure of a mitochondrial ribosome with minimal RNA.
Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9637-42. doi: 10.1073/pnas.0901631106. Epub 2009 Jun 3.
8
Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly.
Cell Rep. 2018 Feb 13;22(7):1935-1944. doi: 10.1016/j.celrep.2018.01.066.
9
The 55S mammalian mitochondrial ribosome and its tRNA-exit region.
Biochimie. 2015 Jul;114:119-26. doi: 10.1016/j.biochi.2015.03.013. Epub 2015 Mar 20.
10
Distinct mechanisms of the human mitoribosome recycling and antibiotic resistance.
Nat Commun. 2021 Jun 14;12(1):3607. doi: 10.1038/s41467-021-23726-4.

引用本文的文献

1
Ensemble refinement of mismodeled cryo-EM RNA structures using all-atom simulations.
Nat Commun. 2025 May 16;16(1):4549. doi: 10.1038/s41467-025-59769-0.
2
GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation.
Cell Mol Life Sci. 2023 Nov 16;80(12):361. doi: 10.1007/s00018-023-05014-0.
3
Leigh syndrome is the main clinical characteristic of PTCD3 deficiency.
Brain Pathol. 2023 May;33(3):e13134. doi: 10.1111/bpa.13134. Epub 2022 Nov 30.
5
L22 ribosomal protein is involved in dynamin-related protein 1-mediated gastric carcinoma progression.
Bioengineered. 2022 Mar;13(3):6650-6664. doi: 10.1080/21655979.2022.2045842.
6
A distinct assembly pathway of the human 39S late pre-mitoribosome.
Nat Commun. 2021 Jul 27;12(1):4544. doi: 10.1038/s41467-021-24818-x.
7
Distinct mechanisms of the human mitoribosome recycling and antibiotic resistance.
Nat Commun. 2021 Jun 14;12(1):3607. doi: 10.1038/s41467-021-23726-4.
8
Linear Density Sucrose Gradients to Study Mitoribosomal Biogenesis in Tissue-Specific Knockout Mice.
Methods Mol Biol. 2021;2224:47-60. doi: 10.1007/978-1-0716-1008-4_3.
9
The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.
RNA Biol. 2021 Nov;18(11):1489-1500. doi: 10.1080/15476286.2020.1861406. Epub 2020 Dec 21.

本文引用的文献

1
Architecture of the large subunit of the mammalian mitochondrial ribosome.
Nature. 2014 Jan 23;505(7484):515-9. doi: 10.1038/nature12890. Epub 2013 Dec 22.
2
Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.
Front Physiol. 2013 Jul 30;4:183. doi: 10.3389/fphys.2013.00183. eCollection 2013.
3
RELION: implementation of a Bayesian approach to cryo-EM structure determination.
J Struct Biol. 2012 Dec;180(3):519-30. doi: 10.1016/j.jsb.2012.09.006. Epub 2012 Sep 19.
4
Mitochondrial diseases: translation matters.
Mol Cell Neurosci. 2013 Jul;55:1-12. doi: 10.1016/j.mcn.2012.08.013. Epub 2012 Sep 7.
5
Structural aspects of mitochondrial translational apparatus.
Curr Opin Struct Biol. 2012 Dec;22(6):797-803. doi: 10.1016/j.sbi.2012.08.003. Epub 2012 Sep 6.
6
The structure of the eukaryotic ribosome at 3.0 Å resolution.
Science. 2011 Dec 16;334(6062):1524-9. doi: 10.1126/science.1212642. Epub 2011 Nov 17.
7
Contacts between mammalian mitochondrial translational initiation factor 3 and ribosomal proteins in the small subunit.
Biochim Biophys Acta. 2011 Dec;1814(12):1779-84. doi: 10.1016/j.bbapap.2011.09.013. Epub 2011 Oct 12.
8
Human diseases with impaired mitochondrial protein synthesis.
Biochim Biophys Acta. 2011 Sep;1807(9):1198-205. doi: 10.1016/j.bbabio.2011.06.010. Epub 2011 Jun 25.
9
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
10
I-TASSER: a unified platform for automated protein structure and function prediction.
Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验