Suppr超能文献

Shine-Dalgarno 序列的多样性揭示了翻译起始的进化。

The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.

机构信息

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.

Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.

出版信息

RNA Biol. 2021 Nov;18(11):1489-1500. doi: 10.1080/15476286.2020.1861406. Epub 2020 Dec 21.

Abstract

Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.

摘要

Shine-Dalgarno (SD) 序列是原核核糖体结合位点的核心元件,通过与 16S rRNA 的反 SD(aSD) 序列碱基配对促进 mRNA 翻译。与这一范式相反,对数千种原核生物的检查揭示了基因组内和基因组间 SD 序列的巨大多样性,而 aSD 序列则基本保持不变。这种模式导致许多人提出了识别翻译起始的未知机制。在这里,我们回顾了原核生物中已知的翻译起始途径。此外,我们通过调查生物化学、基因组学和高通量遗传学的最新进展,试图了解 SD 多样性的原因和后果。这些发现共同表明:(1) SD:aSD 碱基配对对翻译起始有益但非必需。(2) mRNA 的 5'非翻译区动态进化,并与生物系统发育和生态位相关。(3) 核糖体在不同物种中进化出了不同的翻译起始途径。我们提出了一个模型,描绘了由基因表达优化、适应环境和生长需求以及核糖体启动翻译的特定物种先决条件塑造的 SD 多样性。该模型突出了核糖体和 mRNA 特征的共同进化,导致每个生物体中转录装置的功能定制。

相似文献

1
The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.
RNA Biol. 2021 Nov;18(11):1489-1500. doi: 10.1080/15476286.2020.1861406. Epub 2020 Dec 21.
2
Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites.
PLoS Genet. 2011 Jun;7(6):e1002155. doi: 10.1371/journal.pgen.1002155. Epub 2011 Jun 23.
3
Analysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various prokaryotes.
Bioinformatics. 1999 Jul-Aug;15(7-8):578-81. doi: 10.1093/bioinformatics/15.7.578.
4
A second putative mRNA binding site on the Escherichia coli ribosome.
Gene. 1995 Jul 4;160(1):75-9. doi: 10.1016/0378-1119(95)00134-r.
6
Anatomy of Escherichia coli ribosome binding sites.
J Mol Biol. 2001 Oct 12;313(1):215-28. doi: 10.1006/jmbi.2001.5040.
9
Prokaryotic coding regions have little if any specific depletion of Shine-Dalgarno motifs.
PLoS One. 2018 Aug 23;13(8):e0202768. doi: 10.1371/journal.pone.0202768. eCollection 2018.
10
Evidence for context-dependent complementarity of non-Shine-Dalgarno ribosome binding sites to Escherichia coli rRNA.
ACS Chem Biol. 2013 May 17;8(5):958-66. doi: 10.1021/cb3005726. Epub 2013 Mar 7.

引用本文的文献

1
RNA elements and their biotechnological applications in plants.
New Phytol. 2025 Sep;247(6):2517-2537. doi: 10.1111/nph.70400. Epub 2025 Jul 27.
2
Aptamer‑mediated modulation of eEF1 enhances salt stress tolerance in rice.
BMC Plant Biol. 2025 Jul 2;25(1):800. doi: 10.1186/s12870-025-06896-x.
3
Targeted removal of the 16S rRNA anti-Shine-Dalgarno sequence by a Mycobacterium tuberculosis MazF toxin.
J Biol Chem. 2025 Jul;301(7):110323. doi: 10.1016/j.jbc.2025.110323. Epub 2025 May 30.
4
Development of an sRNA-mediated conditional knockdown system for .
mBio. 2025 Feb 5;16(2):e0254524. doi: 10.1128/mbio.02545-24. Epub 2024 Dec 13.
5
5'-untranslated region sequences enhance plasmid-based protein production in .
Front Microbiol. 2024 Nov 25;15:1443342. doi: 10.3389/fmicb.2024.1443342. eCollection 2024.
6
5'UTR G-quadruplex structure enhances translation in size dependent manner.
Nat Commun. 2024 May 10;15(1):3963. doi: 10.1038/s41467-024-48247-8.
8
The discovery of novel noncoding RNAs in 50 bacterial genomes.
Nucleic Acids Res. 2024 May 22;52(9):5152-5165. doi: 10.1093/nar/gkae248.
9
Ribosomal mutations enable a switch between high fitness and high stress resistance in .
Front Microbiol. 2024 Mar 28;15:1355268. doi: 10.3389/fmicb.2024.1355268. eCollection 2024.
10
Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence.
PLoS One. 2024 Jan 11;19(1):e0289914. doi: 10.1371/journal.pone.0289914. eCollection 2024.

本文引用的文献

1
Recent Advances in Archaeal Translation Initiation.
Front Microbiol. 2020 Sep 18;11:584152. doi: 10.3389/fmicb.2020.584152. eCollection 2020.
2
Ribosome recycling is not critical for translational coupling in .
Elife. 2020 Sep 23;9:e59974. doi: 10.7554/eLife.59974.
3
Structure of the bacterial ribosome at 2 Å resolution.
Elife. 2020 Sep 14;9:e60482. doi: 10.7554/eLife.60482.
4
Simplification of Ribosomes in Bacteria with Tiny Genomes.
Mol Biol Evol. 2021 Jan 4;38(1):58-66. doi: 10.1093/molbev/msaa184.
6
Global fitness landscapes of the Shine-Dalgarno sequence.
Genome Res. 2020 May;30(5):711-723. doi: 10.1101/gr.260182.119. Epub 2020 May 18.
8
Root of the Tree: The Significance, Evolution, and Origins of the Ribosome.
Chem Rev. 2020 Jun 10;120(11):4848-4878. doi: 10.1021/acs.chemrev.9b00742. Epub 2020 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验