Suppr超能文献

环境异质性在基因-环境与数量性状相互作用的荟萃分析中的作用。

The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits.

作者信息

Li Shi, Mukherjee Bhramar, Taylor Jeremy M G, Rice Kenneth M, Wen Xiaoquan, Rice John D, Stringham Heather M, Boehnke Michael

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America.

出版信息

Genet Epidemiol. 2014 Jul;38(5):416-29. doi: 10.1002/gepi.21810. Epub 2014 May 6.

Abstract

With challenges in data harmonization and environmental heterogeneity across various data sources, meta-analysis of gene-environment interaction studies can often involve subtle statistical issues. In this paper, we study the effect of environmental covariate heterogeneity (within and between cohorts) on two approaches for fixed-effect meta-analysis: the standard inverse-variance weighted meta-analysis and a meta-regression approach. Akin to the results in Simmonds and Higgins (), we obtain analytic efficiency results for both methods under certain assumptions. The relative efficiency of the two methods depends on the ratio of within versus between cohort variability of the environmental covariate. We propose to use an adaptively weighted estimator (AWE), between meta-analysis and meta-regression, for the interaction parameter. The AWE retains full efficiency of the joint analysis using individual level data under certain natural assumptions. Lin and Zeng (2010a, b) showed that a multivariate inverse-variance weighted estimator retains full efficiency as joint analysis using individual level data, if the estimates with full covariance matrices for all the common parameters are pooled across all studies. We show consistency of our work with Lin and Zeng (2010a, b). Without sacrificing much efficiency, the AWE uses only univariate summary statistics from each study, and bypasses issues with sharing individual level data or full covariance matrices across studies. We compare the performance of the methods both analytically and numerically. The methods are illustrated through meta-analysis of interaction between Single Nucleotide Polymorphisms in FTO gene and body mass index on high-density lipoprotein cholesterol data from a set of eight studies of type 2 diabetes.

摘要

由于不同数据源之间存在数据协调和环境异质性方面的挑战,基因 - 环境相互作用研究的荟萃分析常常会涉及一些微妙的统计问题。在本文中,我们研究了环境协变量异质性(队列内部和队列之间)对固定效应荟萃分析的两种方法的影响:标准逆方差加权荟萃分析和荟萃回归方法。与Simmonds和Higgins()的结果类似,我们在某些假设下获得了这两种方法的分析效率结果。这两种方法的相对效率取决于环境协变量在队列内部与队列之间变异性的比率。我们建议在荟萃分析和荟萃回归之间使用一种自适应加权估计器(AWE)来估计相互作用参数。在某些自然假设下,AWE在使用个体水平数据进行联合分析时保持了完全效率。Lin和Zeng(2010a,b)表明,如果将所有共同参数的具有完整协方差矩阵的估计值汇总到所有研究中,多元逆方差加权估计器在使用个体水平数据进行联合分析时保持完全效率。我们展示了我们的工作与Lin和Zeng(2010a,b)的一致性。在不损失太多效率的情况下,AWE仅使用每个研究的单变量汇总统计量,并且绕过了跨研究共享个体水平数据或完整协方差矩阵的问题。我们通过分析和数值方法比较了这些方法的性能。通过对一组八项2型糖尿病研究的高密度脂蛋白胆固醇数据进行FTO基因单核苷酸多态性与体重指数之间相互作用的荟萃分析来说明这些方法。

相似文献

1
The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits.
Genet Epidemiol. 2014 Jul;38(5):416-29. doi: 10.1002/gepi.21810. Epub 2014 May 6.
5
9
METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
Bioinformatics. 2015 Jan 15;31(2):151-7. doi: 10.1093/bioinformatics/btu629. Epub 2014 Sep 23.
10
Meta-Analysis of SNP-Environment Interaction with Heterogeneity.
Hum Hered. 2019;84(3):117-126. doi: 10.1159/000504170. Epub 2019 Dec 19.

引用本文的文献

4
Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies.
Cancer Epidemiol Biomarkers Prev. 2017 Sep;26(9):1370-1380. doi: 10.1158/1055-9965.EPI-17-0459. Epub 2017 Jul 14.
6
Meta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.
Genetics. 2016 Feb;202(2):457-70. doi: 10.1534/genetics.115.180869. Epub 2015 Dec 29.
7
Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.
Genet Epidemiol. 2015 May;39(4):259-75. doi: 10.1002/gepi.21895. Epub 2015 Mar 23.

本文引用的文献

1
A basic introduction to fixed-effect and random-effects models for meta-analysis.
Res Synth Methods. 2010 Apr;1(2):97-111. doi: 10.1002/jrsm.12. Epub 2010 Nov 21.
2
Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction.
Biometrika. 2012 Dec;99(4):929-944. doi: 10.1093/biomet/ass044. Epub 2012 Sep 25.
3
A genome-wide scan for breast cancer risk haplotypes among African American women.
PLoS One. 2013;8(2):e57298. doi: 10.1371/journal.pone.0057298. Epub 2013 Feb 28.
5
On the relative efficiency of using summary statistics versus individual-level data in meta-analysis.
Biometrika. 2010 Jun;97(2):321-332. doi: 10.1093/biomet/asq006. Epub 2010 Apr 15.
9
Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies.
Lancet. 2012 Mar 31;379(9822):1205-13. doi: 10.1016/S0140-6736(11)61931-4. Epub 2012 Mar 14.
10
Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons.
Am J Epidemiol. 2012 Feb 1;175(3):177-90. doi: 10.1093/aje/kwr367. Epub 2011 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验