Suppr超能文献

基于子集的分析:利用基因-环境相互作用在多项研究或多种表型中发现基因关联

Subset-Based Analysis Using Gene-Environment Interactions for Discovery of Genetic Associations across Multiple Studies or Phenotypes.

作者信息

Yu Youfei, Xia Lu, Lee Seunggeun, Zhou Xiang, Stringham Heather M, Boehnke Michael, Mukherjee Bhramar

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Hum Hered. 2018;83(6):283-314. doi: 10.1159/000496867. Epub 2019 May 27.

Abstract

OBJECTIVES

Classical methods for combining summary data from genome-wide association studies only use marginal genetic effects, and power can be compromised in the presence of heterogeneity. We aim to enhance the discovery of novel associated loci in the presence of heterogeneity of genetic effects in subgroups defined by an environmental factor.

METHODS

We present a pvalue-assisted subset testing for associations (pASTA) framework that generalizes the previously proposed association analysis based on subsets (ASSET) method by incorporating gene-environment (G-E) interactions into the testing procedure. We conduct simulation studies and provide two data examples.

RESULTS

Simulation studies show that our proposal is more powerful than methods based on marginal associations in the presence of G-E interactions and maintains comparable power even in their absence. Both data examples demonstrate that our method can increase power to detect overall genetic associations and identify novel studies/phenotypes that contribute to the association.

CONCLUSIONS

Our proposed method can be a useful screening tool to identify candidate single nucleotide polymorphisms that are potentially associated with the trait(s) of interest for further validation. It also allows researchers to determine the most probable subset of traits that exhibit genetic associations in addition to the enhancement of power.

摘要

目的

全基因组关联研究中汇总数据的经典合并方法仅使用边际遗传效应,在存在异质性的情况下,检验效能可能会受到影响。我们旨在提高在由环境因素定义的亚组中存在遗传效应异质性的情况下发现新的相关基因座的能力。

方法

我们提出了一种用于关联分析的p值辅助子集检验(pASTA)框架,该框架通过将基因-环境(G-E)相互作用纳入检验过程,对先前提出的基于子集的关联分析(ASSET)方法进行了推广。我们进行了模拟研究并提供了两个数据示例。

结果

模拟研究表明,在存在G-E相互作用的情况下,我们的方法比基于边际关联的方法更具检验效能,即使在不存在G-E相互作用的情况下,其检验效能也相当。两个数据示例均表明,我们的方法可以提高检测总体遗传关联的效能,并识别出对该关联有贡献的新研究/表型。

结论

我们提出的方法可以作为一种有用的筛选工具,用于识别可能与感兴趣的性状相关的候选单核苷酸多态性,以便进一步验证。它还允许研究人员确定除了提高检验效能之外,最有可能表现出遗传关联的性状子集。

相似文献

3
Subset testing and analysis of multiple phenotypes.
Genet Epidemiol. 2019 Jul;43(5):492-505. doi: 10.1002/gepi.22199. Epub 2019 Mar 28.
4
Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects.
Hum Hered. 2010;70(4):292-300. doi: 10.1159/000323318. Epub 2011 Feb 3.
5
The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits.
Genet Epidemiol. 2014 Jul;38(5):416-29. doi: 10.1002/gepi.21810. Epub 2014 May 6.
6
Methods for meta-analysis of multiple traits using GWAS summary statistics.
Genet Epidemiol. 2018 Mar;42(2):134-145. doi: 10.1002/gepi.22105. Epub 2017 Dec 10.
7
Finding novel genes by testing G × E interactions in a genome-wide association study.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.
9
Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
Genet Epidemiol. 2016 Jul;40(5):394-403. doi: 10.1002/gepi.21977. Epub 2016 May 27.

引用本文的文献

1
Gene-environment interactions in human health.
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.
2
Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability.
HGG Adv. 2024 Apr 11;5(2):100283. doi: 10.1016/j.xhgg.2024.100283. Epub 2024 Mar 16.
3
Substance use and common contributors to morbidity: A genetics perspective.
EBioMedicine. 2022 Sep;83:104212. doi: 10.1016/j.ebiom.2022.104212. Epub 2022 Aug 12.
4
A powerful subset-based method identifies gene set associations and improves interpretation in UK Biobank.
Am J Hum Genet. 2021 Apr 1;108(4):669-681. doi: 10.1016/j.ajhg.2021.02.016. Epub 2021 Mar 16.

本文引用的文献

1
Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes.
Genet Epidemiol. 2019 Feb;43(1):4-23. doi: 10.1002/gepi.22156. Epub 2018 Oct 8.
2
A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.
Ann Appl Stat. 2017 Dec;11(4):2027-2051. doi: 10.1214/17-AOAS1052. Epub 2017 Dec 28.
4
Multiple phenotype association tests using summary statistics in genome-wide association studies.
Biometrics. 2018 Mar;74(1):165-175. doi: 10.1111/biom.12735. Epub 2017 Jun 26.
5
Differential expression analysis for RNAseq using Poisson mixed models.
Nucleic Acids Res. 2017 Jun 20;45(11):e106. doi: 10.1093/nar/gkx204.
6
8
Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification.
Am J Epidemiol. 2016 Feb 1;183(3):237-47. doi: 10.1093/aje/kwv198. Epub 2016 Jan 10.
10
Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension.
Am J Hum Genet. 2015 Jan 8;96(1):21-36. doi: 10.1016/j.ajhg.2014.11.011. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验