Yu Youfei, Xia Lu, Lee Seunggeun, Zhou Xiang, Stringham Heather M, Boehnke Michael, Mukherjee Bhramar
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA.
Hum Hered. 2018;83(6):283-314. doi: 10.1159/000496867. Epub 2019 May 27.
Classical methods for combining summary data from genome-wide association studies only use marginal genetic effects, and power can be compromised in the presence of heterogeneity. We aim to enhance the discovery of novel associated loci in the presence of heterogeneity of genetic effects in subgroups defined by an environmental factor.
We present a pvalue-assisted subset testing for associations (pASTA) framework that generalizes the previously proposed association analysis based on subsets (ASSET) method by incorporating gene-environment (G-E) interactions into the testing procedure. We conduct simulation studies and provide two data examples.
Simulation studies show that our proposal is more powerful than methods based on marginal associations in the presence of G-E interactions and maintains comparable power even in their absence. Both data examples demonstrate that our method can increase power to detect overall genetic associations and identify novel studies/phenotypes that contribute to the association.
Our proposed method can be a useful screening tool to identify candidate single nucleotide polymorphisms that are potentially associated with the trait(s) of interest for further validation. It also allows researchers to determine the most probable subset of traits that exhibit genetic associations in addition to the enhancement of power.
全基因组关联研究中汇总数据的经典合并方法仅使用边际遗传效应,在存在异质性的情况下,检验效能可能会受到影响。我们旨在提高在由环境因素定义的亚组中存在遗传效应异质性的情况下发现新的相关基因座的能力。
我们提出了一种用于关联分析的p值辅助子集检验(pASTA)框架,该框架通过将基因-环境(G-E)相互作用纳入检验过程,对先前提出的基于子集的关联分析(ASSET)方法进行了推广。我们进行了模拟研究并提供了两个数据示例。
模拟研究表明,在存在G-E相互作用的情况下,我们的方法比基于边际关联的方法更具检验效能,即使在不存在G-E相互作用的情况下,其检验效能也相当。两个数据示例均表明,我们的方法可以提高检测总体遗传关联的效能,并识别出对该关联有贡献的新研究/表型。
我们提出的方法可以作为一种有用的筛选工具,用于识别可能与感兴趣的性状相关的候选单核苷酸多态性,以便进一步验证。它还允许研究人员确定除了提高检验效能之外,最有可能表现出遗传关联的性状子集。