Department of Biostatistics, School of Public Health, the University of Michigan, Ann Arbor, USA.
Am J Epidemiol. 2012 Feb 1;175(3):177-90. doi: 10.1093/aje/kwr367. Epub 2011 Dec 22.
Several methods for screening gene-environment interaction have recently been proposed that address the issue of using gene-environment independence in a data-adaptive way. In this report, the authors present a comparative simulation study of power and type I error properties of 3 classes of procedures: 1) the standard 1-step case-control method; 2) the case-only method that requires an assumption of gene-environment independence for the underlying population; and 3) a variety of hybrid methods, including empirical-Bayes, 2-step, and model averaging, that aim at gaining power by exploiting the assumption of gene-environment independence and yet can protect against false positives when the independence assumption is violated. These studies suggest that, although the case-only method generally has maximum power, it has the potential to create substantial false positives in large-scale studies even when a small fraction of markers are associated with the exposure under study in the underlying population. All the hybrid methods perform well in protecting against such false positives and yet can retain substantial power advantages over standard case-control tests. The authors conclude that, for future genome-wide scans for gene-environment interactions, major power gain is possible by using alternatives to standard case-control analysis. Whether a case-only type scan or one of the hybrid methods should be used depends on the strength and direction of gene-environment interaction and association, the level of tolerance for false positives, and the nature of replication strategies.
最近提出了几种筛选基因-环境相互作用的方法,这些方法以数据自适应的方式解决了使用基因-环境独立性的问题。在本报告中,作者对 3 类程序的功效和 I 型错误属性进行了比较模拟研究:1)标准的 1 步病例对照法;2)仅病例法,该方法要求对基础人群中的基因-环境独立性做出假设;3)各种混合方法,包括经验贝叶斯法、2 步法和模型平均法,旨在通过利用基因-环境独立性的假设来提高功效,但当独立性假设被违反时,也可以防止假阳性。这些研究表明,尽管仅病例法通常具有最大的功效,但即使在基础人群中只有一小部分标记与研究中的暴露相关,它也有可能在大规模研究中产生大量的假阳性。所有混合方法在防止此类假阳性方面都表现良好,但相对于标准病例对照检验,仍能保留相当大的功效优势。作者得出结论,对于未来的全基因组基因-环境相互作用扫描,通过使用替代标准病例对照分析的方法,可以获得主要的功效增益。是否使用仅病例类型扫描或混合方法之一取决于基因-环境相互作用和关联的强度和方向、对假阳性的容忍度水平以及复制策略的性质。