Suppr超能文献

基于天然产物的抗癌药物发现的系统药理学策略

Systems pharmacology strategies for anticancer drug discovery based on natural products.

作者信息

Luo Fang, Gu Jiangyong, Chen Lirong, Xu Xiaojie

机构信息

Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

出版信息

Mol Biosyst. 2014 Jul;10(7):1912-7. doi: 10.1039/c4mb00105b. Epub 2014 May 6.

Abstract

Cancer is a complex disease, known medically as malignant neoplasm. Natural products (NPs) play a very important role in anticancer drug discovery and a large number of NPs have been proven to have potential anticancer effects. Compared with newly synthesized chemical compounds, NPs show a favorable profile in terms of their absorption and metabolism in the body with low toxicity. Searching for multi-target natural drugs can be regarded as a solution to improve therapeutic efficacy and safety. In this work, we collected 104 cancer-associated target proteins from the Protein Data Bank. Based on the Universal Natural Products Database, all of the NPs were docked to 104 cancer-associated target proteins. Then we explored the potential of NPs and several herbs in anticancer drug discovery by using a network-based multi-target computational approach. The NPs with the most potential for anticancer drug discovery and their indications were predicted based on a docking score-weighted prediction model. We also explored the interactions between NPs and cancer target proteins to find the pathological networks, potential drug candidates and new indications.

摘要

癌症是一种复杂的疾病,医学上称为恶性肿瘤。天然产物在抗癌药物发现中发挥着非常重要的作用,大量天然产物已被证明具有潜在的抗癌作用。与新合成的化合物相比,天然产物在体内的吸收和代谢方面表现出良好的特性,且毒性较低。寻找多靶点天然药物可被视为提高治疗效果和安全性的一种解决方案。在这项工作中,我们从蛋白质数据库收集了104种与癌症相关的靶蛋白。基于通用天然产物数据库,将所有天然产物与104种与癌症相关的靶蛋白进行对接。然后,我们使用基于网络的多靶点计算方法探索天然产物和几种草药在抗癌药物发现中的潜力。基于对接分数加权预测模型预测了最具抗癌药物发现潜力的天然产物及其适应症。我们还探索了天然产物与癌症靶蛋白之间的相互作用,以找到病理网络、潜在的候选药物和新的适应症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验